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Although the third edition of Physically Based Rendering includes an implemen-

tation of a shape that allows for efficient intersections of rays with a “flat ribbon”

primitive that can be used for modeling fine hair and fur, the system doesn’t in-

clude any BSDFs or BSSRDFs that model light scattering from hair. (This state

of affairs was due to both time and space limits.)

Therefore, here we will describe the implementation of the hair scattering model

described in the paper A Practical and Controllable Hair and Fur Model for

Production Path Tracing , by Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck

Tappan, and Brent Burley. The paper itself is available here: benedikt-bitterli.me/

pchfm/. See the “Further Reading” section at the end of this document for more

information about previous work in scattering from hair (some of which is also

incorporated in our implementation here.) Figure 1.1 shows a model of curly hair

rendered using this BSDF.

This implementation includes both a new BxDF and a new Material for hair. Both

of these are defined in the files materials/hair.h and materials/hair.cpp, which

are now included in the “master” branch of pbrt. A few unit tests are in the file

tests/hair.cpp. Note that this is a different organization than the rest of pbrt,

where BxDFs are generally defined in core/reflection.{h,cpp}. For this extension,

we wanted to localize the additions to all-new files as much as possible in order

to minimize changes to preexisting parts of the system.



Figure 1.1: Curly hair model represented by nearly 3.3 million Curve shapes, rendered using the scattering
model described in this document. Path tracing was used to accurately model the effect of multiple
scattering; Figure 1.2 shows the difference global illumination makes in hair. For this image, 1024 samples
per pixel were used. (Hair geometry courtesy Cem Yuksel.)

1.1 GEOMETRY

Before discussing radiometry and light scattering from hair, we’ll start by defining

some ways of measuring incident and outgoing directions from intersection points

on hair.

We will assume that the hair BSDF is only used with the Curve shape that was

defined in Section 3.7. in the third edition of Physically Based Rendering .1 A Curve

can represent the shape defined by circle swept along the path of a Bézier curve,

giving a generalized cylinder, and provides a reasonably efficient intersection test

for this primitive. For the geometric discussion to follow, we’ll assume that the

Curve variant corresponding to a flat ribbon that is always facing the incident ray

is being used. However, in the BSDF model, we’ll interpret intersection points as

if they were on the surface of the swept cylinder. If there is no interpenetration

1 All page and section references in the remainder of this document will refer to the third edition.
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Figure 1.2: The Importance of Multiple Scattering. When the hair model in Figure 1.1 is rendered
with direct lighting only, the apparent difference is substantial. Especially for light-colored hair, multiple
scattering makes a significant contribution to hair’s appearance. (Hair geometry courtesy Cem Yuksel.)

between hairs and if the hair’s width is not much larger than a pixel’s width,

there’s no harm in switching between these interpretations.

Throughout our implementation of this scattering model, we will regularly find

it useful to separately consider scattering in the longitudinal plane, effectively

using a side view of the curve, and scattering the azimuthal plane, considering

it head-on at a particular point along it. To understand these parameterizations,

first recall that Curves are parameterized such that the u direction is along the

length of the curve and v spans its width. At a given u, all of the possible surface

normals of the curve are given by the surface normals of the circular cross-section

at that point. All of these normals lie in a plane; we will call this the normal plane

(Figure 1.3).

We’ll find it useful to represent directions at a ray–curve intersection point

with respect to coordinates (θ, φ) that are defined with respect to the normal

plane at the u position where the ray intersected the curve. The angle θ is the

longitudinal angle, which is the offset of the ray with respect to the normal plane

(Figure 1.4(a)); θ ranges from −π/2 to π/2, where π/2 corresponds to a direction

aligned with ∂p/∂u and −π/2 corresponds to −∂p/∂u. As explained at the start
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Figure 1.3: At any parametric point u along a Curve shape, the cross-section of the curve is defined by
a circle. All of the circle’s surface normals at u (arrows) lie in a plane (dashed lines), dubbed the “normal
plane”.

Figure 1.4: (a) Given a direction ω at a point on a curve, the angle θ is defined by the angle between
ω and the normal plane at the point (thick line). The curve’s tangent vector at the point is aligned with
the x axis in the BSDF coordinate system. (b) For a direction ω, the angle φ is found by projecting the
direction into the normal plane and computing its angle with the y axis, which corresponds to the curve’s
∂p/∂v in the BSDF coordinate system.

of Chapter 8, in pbrt’s regular BSDF coordinate system, ∂p/∂u is aligned with the

+x axis, so given a direction in the BSDF coordinate system, we have sin θ = ωx,

since the normal plane is perpendicular to ∂p/∂u.

In the BSDF coordinate system, the normal plane is spanned by the y and z

coordinate axes. (y corresponds to ∂p/∂v for curves, which is always perpendicu-

lar to the cure’s ∂p/∂u, and z is aligned with the ribbon normal.) The azimuthal

angle φ is found by projecting a direction ω into the normal plane and computing

its angle with the y axis. It thus ranges from 0 to 2π. (See Figure 1.4(b).)

One more measurement with respect to the curve will be useful in the following.

Consider incident rays with some direction ω: at any given parametric u value, all

such rays that intersect the curve can only possibly intersect one half of the circle

swept along the curve (Figure 1.5). We will parameterize the circle’s diameter

with the variable h, where h=±1 corresponds to the ray grazing the edge of the

circle, and h= 0 corresponds to hitting it edge-on. Because pbrt parameterizes

curves with v across the curve and v ∈ [0, 1], we can compute h=−1 + 2v.
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Figure 1.5: Given an incident direction ω of a ray that intersected a Curve projected to the normal
plane, we can parameterize the curve’s width with h ∈ [−1, 1]. Given the h for a ray that has intersected
the curve, trigonometry shows how to compute the angle γ between ω and the surface normal on the
curve’s surface at the intersection point. The two angles γ are equal, and because the circle’s radius is 1,
sin γ = h.

Given the h for a ray intersection, we can compute the angle between the surface

normal (which is by definition in the normal plane) and the direction ω, which

we’ll denote by γ. (Note: this is unrelated to the γn notation used for floating-

point error bounds in Section 3.9). See Figure 1.5, which shows that sin γ = h.

1.2 UTILITY ROUTINES

Before going forward to the hair scattering model implementation, we’ll intro-

duce a few utility functions that will be repeatedly useful in the following. (In

retrospect, these would have been nice to have included in pbrt-v3; they will

likely be part of the core system in a future version.)

First, Sqr() just computes the square of the given value. Although this function

provides trivial functionality, it makes it possible to transcribe equations to code

more succinctly than if we did not have this helper.

〈General Utility Functions〉 ≡

inline Float Sqr(Float v) { return v * v; }

In the following, we will also need to compute relatively large integer powers of

floating-point values. Because the integer powers will be compile-time constants,

it’s possible to use C++ templates to generate much more efficient code to

compute these powers than is generally possible using standard library routines.

Consider for example the task of computing the value v20. This computation is

equivalently expressed as
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(((v2)2)2)2(v2)2.

Counting up multiplications, we can see that given v, just five multiplies are

necessary to compute this value (assuming that the value (v2)2 is computed once

and reused). More generally, raising a value to an integer power n can be done

with O(log n) multiplies.

An obvious (and indeed correct) approach to compute v20 would be to call

std::pow(v, 20). Doing so is likely to be much less efficient than five multiplies;

in general, std::pow() is implemented by computing a logarithm, multiplying by

the exponent, and then exponentiating. Evaluating these transcendental functions

generally requires tens or hundreds of machine instructions, taking much longer

than a handful of multiplies. Some std::pow() implementations check for small

integer exponents and handle them specially, and some compilers detect calls like

std::pow(v, 2) and directly turn them into multiplies, but neither of these can

be depended on.

C++ template functions offer a way to turn exponentiation like this into an

efficient series of multiplies. Consider this use of templates:

template <int n> Float Pow(Float v) { return v * Pow<n-1>(v); }

template <> Float Pow<0>(Float v) { return 1; }

A call like Pow<5>(v) will be turned into v*v*v*v*v, which can be directly compiled

into a series of multiplies. There’s a catch, however: recall from Section 3.9 of the

third edition that the IEEE floating-point standard prohibits the compiler from

reassociating floating-point expressions. Thus, a call Pow<20>(v) will be compiled

to nineteen multiply operations—likely more efficient than std::pow(), but not

yet the logarithmic number that’s possible assuming we don’t mind reassociation.

The following template functions give us a logarithmic number of multiplication

operations. The main Pow() function splits the exponent in half before recursively

calling itself; template specializations handle the base cases.

〈General Utility Functions〉 ≡

template <int n>

static Float Pow(Float v) {

static_assert(n > 0, "Power can’t be negative");

Float n2 = Pow<n / 2>(v);

return n2 * n2 * Pow<n & 1>(v);

}

template <> Float Pow<1>(Float v) { return v; }

template <> Float Pow<0>(Float v) { return 1; }

In benchmarks on a 2016-era laptop, this implementation was 4.6x faster than

calling std::pow for its uses later in this code.

Though our implementation of Pow() is straightforward, it’s always a good idea

to have a unit test. pbrt uses the Google Test framework for unit tests; see the

pbrt-v3 User’s Guide for more information. Here, we test integer powers up to 29.

The value 2 for v is chosen carefully; recall from the discussion on p. 214 of the
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third edition that with IEEE floating-point arithmetic, multiplication by a factor

of two gives an exact result as long as there’s no underflow or overflow. Thus,

we can reasonably expect exact equality with the integer power of two reference

values computed for the test.

〈Hair Tests〉 ≡

TEST(Hair, Pow) {

EXPECT_EQ(Pow<0>(2.f), 1 << 0);

EXPECT_EQ(Pow<1>(2.f), 1 << 1);

EXPECT_EQ(Pow<2>(2.f), 1 << 2);

〈Test remainder of pow template powers to 29 〉

}

In the following, we’ll need to compute the arcsine of various values. These values

may be slightly outside the legal range [−1, 1] due to floating-point round-off

error; the SafeASin() utility function handles clamping to this range, which makes

calling code a bit cleaner. A runtime assertion makes sure that the value provided

isn’t too far out of the valid range.

〈General Utility Functions〉 ≡

inline Float SafeASin(Float x) {

CHECK(x >= -1.0001 && x <= 1.0001);

return std::asin(Clamp(x, -1, 1));

}

Similarly, we need to compute the square root of values that may be slightly

negative due to round-off error; again, the clamp to the valid range is nice to

have in a single place.

〈General Utility Functions〉 ≡

inline Float SafeSqrt(Float x) {

CHECK_GE(x, -1e-4);

return std::sqrt(std::max(Float(0), x));

}

1.3 SCATTERING FROM HAIR

Geometric setting and utility functions in hand, we will now turn to discuss the

general scattering behaviors that give hair its distinctive appearance and some

of the assumptions that we’ll make in the following.

Hair and fur have three main components:

•Cuticle: the outer layer, which forms the boundary with air. The cuticle’s

surface is a nested series of scales at a slight angle to the hair surface.
•Cortex: the next layer inside the cuticle. The cortex generally accounts for

around 90% of hair’s volume but less for fur. It is typically colored with

pigments that mostly absorb light.
•Medulla: the center core at the middle of the cortex. It is larger and more

significant in thicker hair and fur. The medulla is also pigmented. Scattering
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Figure 1.6: The surface of hair is formed by scales that deviate a by a small angle α from the ideal
cylinder. (α is generally around 2− 4◦; the angle shown here is larger for illustrative purposes.)

from the medulla is much more significant than scattering from the medium

in the cortex.

For the following model, we’ll make a few assumptions. (Approaches for relaxing

some of them are discussed in the exercises at the end of this document.) First,

we assume that the cuticle can be modeled as a rough dielectric cylinder with

scales that are all angled at the same angle α (effectively giving a nested series

of cones.) (Figure 1.6.) We also treat the hair interior as a homogeneous medium

that only absorbs light—scattering inside the hair is not modeled directly.

We will also make the assumption that scattering can be modeled accurately by

a BSDF—we model light as entering and exiting the hair at the same place. (A

BSSRDF could certainly be used instead; it’s unclear how important subsurface

light transport is in practice.) Note that this assumption does require that the

hair’s diameter be fairly small with respect to how quickly illumination changes

over the surface; this assumption is generally fine in practice.

Incident light arriving at a hair may be scattered one more more times before

leaving the hair; Figure 1.7 shows a few of the possible cases. We use p to denote

the number of path segments it follows inside the hair before being scattered

back out to air. We will sometimes refer to terms with a shorthand that describes

the corresponding scattering events at the boundary: p= 0 corresponds to R, for

reflection, p= 1 is TT, for two transmissions p= 2 is TRT, p= 3 is TRRT, and

so forth.

In the following, we will find it useful to consider these scattering modes sepa-

rately and so will write the hair BSDF as a sum over terms p:

f (ωo, ωi) =

∞
∑

p=0

fp(ωo, ωi). (1.1)

To make the scattering model implementation and importance sampling easier,

many hair scattering models factor f into terms where one depends only on the

angles θ and another on φ, the difference between φo and φi. This semi-separable

model is given by:

fp(ωo, ωi) =
Mp(θo, θi)Ap(ωo)Np(φ)

|cos θi|
, (1.2)
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Figure 1.7: Incident light arriving at a hair can be scattered in a variety of ways. p= 0 corresponds to
light reflected from the surface of the cuticle. Light may also be transmitted through the hair and leave
the other side: p= 1. It may be transmitted into the hair and reflected back into it again before being
transmitted back out: p= 2, and so forth.

where we have a longitudinal scattering function Mp, an attenuation function Ap,

and an azimuthal scattering function Np.
2 The division by |cos θi| cancels out the

corresponding factor in the reflection equation.

In the following implementation, we will evaluate the first few terms of the sum

in Equation (1.1) and then represent all higher-order terms with a single one.

The pMax constant controls how many are evaluated before the switch-over.

〈HairBSDF Constants〉 ≡

static const int pMax = 3;

The model implemented in the HairBSDF is parameterized by six values:

•h: the [−1, 1] offset along the curve width where the ray intersected the

oriented ribbon (h was defined in Section 1.1).
•eta: the index of refraction of the interior of the hair. (Typically, 1.55).
•sigma_a: the absorption coefficient of the hair interior, where distance is

measured with respect to the hair cylinder’s diameter.
•beta_m: the longitudinal roughness of the hair, mapped to the range [0, 1].
•beta_n: the azimuthal roughness, also mapped to [0, 1].
•alpha: the angle that the small scales on the surface of hair are offset from

the base cylinder, expressed in degrees. (Typically, 2).

2 Other authors generally include Ap in the Np term, though we find it more clear to keep them separate for the following exposition. Here we

also use f for the BSDF, which most hair scattering papers denote by S.
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〈HairBSDF Method Definitions〉 ≡

HairBSDF::HairBSDF(Float h, Float eta, const Spectrum &sigma_a, Float beta_m,

Float beta_n, Float alpha)

: BxDF(BxDFType(BSDF_GLOSSY | BSDF_REFLECTION | BSDF_TRANSMISSION)),

h(h), gammaO(SafeASin(h)), eta(eta), sigma_a(sigma_a), beta_m(beta_m),

beta_n(beta_n), alpha(alpha) {

〈Compute longitudinal variance from βm〉

〈Compute azimuthal logistic scale factor from βn〉

〈Compute α terms for hair scales〉

}

〈HairBSDF Private Data〉 ≡

const Float h, gammaO, eta;

const Spectrum sigma_a;

const Float beta_m, beta_n, alpha;

We’ll proceed to the method that evaluates the BSDF, leaving implementation

of the code fragments in the constructor for later, closer to where the values they

compute are used.

〈HairBSDF Method Definitions〉 ≡

Spectrum HairBSDF::f(const Vector3f &wo, const Vector3f &wi) const {

〈Compute hair coordinate system terms related to wo〉

〈Compute hair coordinate system terms related to wi〉

〈Compute cos θt for refracted ray〉

〈Compute γt for refracted ray〉

〈Compute the transmittance T of a single path through the cylinder〉

〈Evaluate hair BSDF 〉

}

There are a few quantities related to the directions ωo and ωi that are needed

for evaluating the hair scattering model—specifically, the sine and cosine of the

angle θ that each direction makes with the plane perpendicular to the curve, and

the angle φ in the azimuthal coordinate system.

As explained in Section 1.1, sin θo is given by the x component of ωo in

the BSDF coordinate system. Given sin θo, because θo ∈ [−π/2, π/2], we know

that cos θo must be positive, and so we can compute cos θo using the identity

sin2 θ + cos2 θ = 1. The angle φo in the perpendicular plane can be computed

with std::atan.

〈Compute hair coordinate system terms related to wo〉 ≡

Float sinThetaO = wo.x;

Float cosThetaO = SafeSqrt(1 - Sqr(sinThetaO));

Float phiO = std::atan2(wo.z, wo.y);

Equivalent code, not included here, computes these values for wi.
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1.3.1 LONGITUDINAL SCATTERING

Onward to Mp, the function that defines the component of scattering related to

the angles θ—longitudinal scattering. Longitudinal scattering is responsible for

the specular lobe along the length of hair and the longitudinal roughness βm
controls the size of this highlight. Figure 1.8 shows a hair model rendered with

three different longitudinal scattering roughnesses.

The model implemented here was developed from d’Eon et al. (2011). The

mathematical details of the derivation are complex, so we won’t include them

here. The goals (which they achieved) were to derive a scattering function that

is normalized (ensuring both energy conservation and no energy loss) and can be

sampled directly. Although the model isn’t derived based on a physical model of

how hair scatters light, it matches measured data well and has parametric control

of roughness v.

Their model is:

Mp(θo, θi) =
1

2v sinh(1/v)
e−

sin θi sin θo
v I0

(

cos θo cos θi
v

)

, (1.3)

where I0 is the modified Bessel function of the first kind and v is the roughness

variance. (Note that this is a different usage of v than earlier in this document

when it was used for the parametric coordinate along the width of a curve.)

Figure 1.9 shows plots of Mp.

It turns out that that this model isn’t numerically stable for low roughness

variance values, so d’Eon (2013) derived a different approach for that case that

operates on the log of I0 before taking an exponent at the end. The v <= .1 test

in the implementation below selects between the two formulations.

〈Hair Local Functions〉 ≡

static Float Mp(Float cosThetaI, Float cosThetaO, Float sinThetaI,

Float sinThetaO, Float v) {

Float a = cosThetaI * cosThetaO / v;

Float b = sinThetaI * sinThetaO / v;

Float mp = (v <= .1) ?

(std::exp(LogI0(a) - b - 1/v + 0.6931f + std::log(1 / (2*v)))) :

(std::exp(-b) * I0(a)) / (std::sinh(1 / v) * 2 * v);

return mp;

}

I0() and LogI0() compute the values of the modified Bessel function of the first

kind its logarithm, respectively. We won’t include their implementations here,

which are based on numerical approximations to those transcendental functions.

〈Hair Local Declarations〉 ≡

inline Float I0(Float x), LogI0(Float x);

One challenge with this model is choosing a roughness v to achieve a desired

look. Here we have implemented a perceptually uniform mapping from roughness

βm ∈ [0, 1] to v where a roughness of 0 is nearly perfectly smooth and 1 is
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Figure 1.8: The Effect of Varying the Longitudinal Roughness βm. Hair model illuminated by a
skylight environment map rendered with varying longitudinal roughness. (a) With a very low roughness,
βm = 0.1, the hair appears too shiny—almost metallic. (b) With βm = 0.25, the highlight is similar to
typical human hair. (c) At high roughness, βm = 0.6, the hair is unrealistically flat and diffuse. (Hair
geometry courtesy Cem Yuksel.)
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Figure 1.9: Plots of the Longitudinal Scattering Function. The shape of Mp as a function of θi for fixed θo (−1 radian, −1.3 radians,
and −1.4 radians, from left to right). In all cases a roughness variance of v = 0.02 was used. Note that for grazing angles, the peak is
slightly shifted from the perfect specular reflection direction (at 1, 1.3, and 1.4, respectively.) Note also that the y axis scales are all
different, reflecting the functions being normalized. (After d’Eon et al. (2011), Figure 4.)

extremely rough. Different roughness values are used for different values of p. For

p= 1, roughness is reduced by an empirical factor that models the focusing of light

due to refraction through the circular boundary of the hair. It is then increased

for p= 2 and subsequent terms, which models the effect of light spreading out

after multiple reflections at the rough cylinder boundary in interior of the hair.

(See the “Further Reading” section for more on this variation.)

〈Compute longitudinal variance from βm〉 ≡

v[0] = Sqr(0.726f * beta_m + 0.812f * Sqr(beta_m) +

3.7f * Pow<20>(beta_m));

v[1] = .25 * v[0];

v[2] = 4 * v[0];

for (int p = 3; p <= pMax; ++p)

v[p] = v[2];

〈HairBSDF Private Data〉 ≡

Float v[pMax + 1];

1.3.2 ABSORPTION IN FIBERS

The Ap term describes how much of the incident light is affected by each of the

scattering modes p. It incorporates two effects: Fresnel reflection and transmission

at the hair–air boundary and absorption of light that passes through the hair

(for p > 0). This absorption is what gives hair and fur its color. Figure 1.10 has

rendered images of hair with varying absorption coefficients, showing the effect

that absorption has. The Ap function that we will implement here models all

reflection and transmission at the hair boundary as perfectly specular—a very

different assumption thatMp (andNp to come), which model glossy reflection and

transmission. This assumption simplifies the implementation and gives reasonable

results in practice (presumably in that the specular paths are in a sense averages

over all of the possibly glossy paths.)

We’ll start by finding the transmittance of a single transmitted segment through

the hair. To do so, we need to find the distance the ray travels until it exits the
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Figure 1.10: Hair Rendered with Various Absorption Coefficients. In all cases, βm = 0.125
and βn = 0.3. (a) σa = (3.35, 5.58, 10.96) (RGB coefficients): in black hair, almost all transmitted
light is absorbed. The white specular highlight from the p = 0 term is the main visual feature. (b)
σa = (0.84, 1.39, 2.74), giving brown hair, where the p > 1 terms all introduce color to the hair. (c)
With a very low absorption coefficient of σa = (0.06, 0.10, 0.20), we have blonde hair. (Hair geometry
courtesy Cem Yuksel.)
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cylinder; the easiest way to do this is to compute the distances in the longitudinal

and azimuthal projections separately.

To compute these distances, we need the transmitted angles of the ray ωo, in the

longitudinal and azimuthal planes, which we’ll denote by θt and γt, respectively.

Application of Snell’s law using the hair’s index of refraction η allows us to

compute sin θt and cos θt.

〈Compute cos θt for refracted ray〉 ≡

Float sinThetaT = sinThetaO / eta;

Float cosThetaT = SafeSqrt(1 - Sqr(sinThetaT));

For γt, although we could compute the transmitted direction ωt from ωo and

then project ωt into the normal plane, it’s possible to compute γt directly using a

modified index of refraction that accounts for the effect of the longitudinal angle

on the refracted direction in the normal plane. The modified index of refraction

is given by

η′ =

√

η2 − sin2 θo
cos θo

.

Given η′, we can compute the refracted direction γt directly in the normal plane.3

Since h= sin γo, we can apply Snell’s law (p. 546) to compute γt.

〈Compute γt for refracted ray〉 ≡

Float etap = std::sqrt(eta * eta - Sqr(sinThetaO)) / cosThetaO;

Float sinGammaT = h / etap;

Float cosGammaT = SafeSqrt(1 - Sqr(sinGammaT));

Float gammaT = SafeASin(sinGammaT);

If we consider the azimuthal projection of the transmitted ray in the normal plane,

we can see that the segment makes the same angle γt with the circle normal at

both of its endpoints (Figure 1.11). If we denote the total length of the segment

by la, then basic trigonometry tells us that la/2 = cos γt, assuming a unit radius

circle.

Now considering the longitudinal projection, we can see that the distance that a

transmitted ray travels before exiting is scaled by a factor of 1/ cos θt as it passes

through the cylinder (Figure 1.12). Putting these together, the total segment

length in terms of the hair diameter is

l =
2 cos γt
cos θt

.

Recall that for the HairBSDF we defined σa to be measured with respect to the

hair diameter (so that adjusting the hair geometry’s width doesn’t completely

change its color). Therefore, we do not consider the hair cylinder diameter when

3 This is due to the Bravais properties of cylindrical scattering. See Appendix B of Marschner et al. (2003) for a nice derivation and further

explanation.
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Figure 1.11: Computing the Transmitted Segment’s Distance. For a transmitted ray with angle γt
with respect to the circle’s surface normal, half of the total distance la is given by cos γ, assuming a unit
radius. Because γt is the same at both halves of the segment, la = 2 cos γt.

Figure 1.12: The Effect of θt on the Transmitted Segment’s Length. The length of the transmitted
segment through the cylinder is increased by a factor of 1/ cos θt versus a direct vertical path.

we apply Beer’s law, and transmittance is given by

T = e−σal. (1.4)

〈Compute the transmittance T of a single path through the cylinder〉 ≡

Spectrum T = Exp(-sigma_a * (2 * cosGammaT / cosThetaT));

Given a single segment’s transmittance, we can now describe the function that

evaluates the full Ap function. Ap() returns an array with the values of Ap up to

pmax and a final value that accounts for the sums of attenuations for all of the

higher-order scattering terms.
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〈Hair Local Functions〉 ≡

static std::array<Spectrum, pMax + 1> Ap(Float cosThetaO, Float eta,

Float h, const Spectrum &T) {

std::array<Spectrum, pMax + 1> ap;

〈Compute p= 0 attenuation at initial cylinder intersection〉

〈Compute p= 1 attenuation term〉

〈Compute attenuation terms up to p= pMax〉

〈Compute attenuation term accounting for remaining orders of scattering〉

return ap;

}

For the A0 term, corresponding to light that reflects at the cuticle, the Fresnel

reflectance at the air–hair boundary gives the fraction of light that is reflected.

We can find the cosine of the angle between the surface normal and the direction

vector with angles θo and γo in the hair coordinate system by cos θo cos γo.

〈Compute p= 0 attenuation at initial cylinder intersection〉 ≡

Float cosGammaO = SafeSqrt(1 - h * h);

Float cosTheta = cosThetaO * cosGammaO;

Float f = FrDielectric(cosTheta, 1.f, eta);

ap[0] = f;

For the TT term, p= 1, we have two 1− f terms, accounting for transmission

into and out of the cuticle boundary, and a single T term for one transmission

path through the hair. For all of the p > 0 terms, which include transmission,

we can neglect the scaling of radiance based on the different indices of refraction

of the exterior and interior media (recall the discussion of this effect on p. 527):

because the viewer and light source are both assumed to be outside the hair, all

of those factors cancel out.

〈Compute p= 1 attenuation term〉 ≡

ap[1] = Sqr(1 - f) * T;

The p= 2 term has one more reflection event, reflecting light back into the hair,

and then a second transmission term. Since we assume perfect specular reflection

at the cuticle boundary, both segments inside the hair make the same angle γt
with the circle’s normal (Figure 1.13). From this, we can see that both segments

must have the same length (and so forth for subsequent segments.) In general,

for p > 0,

Ap = (1− f)2T pfp−1.

〈Compute attenuation terms up to p= pMax〉 ≡

for (int p = 2; p < pMax; ++p)

ap[p] = ap[p - 1] * T * f;

After pMax, a final term accounts for all further orders of scattering. We’d like to

compute the sum of the infinite series of remaining terms, which fortunately can

be found in closed form, since both T < 1 and f < 1:
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Figure 1.13: When a transmitted ray undergoes specular reflection at the interior of the hair cylinder,
it makes the same angle γt with the circle’s surface normal as the original transmitted ray did. From this,
it follows that the lengths of all ray segments for a path inside the cylinder must be equal.

∞
∑

p=pmax

(1− f)2T pfp−1 =
(1− f)2T pmaxfpmax−1

1− Tf
.

〈Compute attenuation term accounting for remaining orders of scattering〉 ≡

ap[pMax] = ap[pMax - 1] * f * T / (Spectrum(1.f) - T * f);

1.3.3 AZIMUTHAL SCATTERING

Finally, we will model the component of scattering dependent on the angle φ. We

will do this work entirely in the normal plane. The azimuthal scattering model

is based on first computing a new azimuthal direction assuming perfect specular

reflection and transmission and then defining a distribution of directions around

this central direction, where increasing roughness gives a wider distribution.

Therefore, we will first consider how an incident ray is deflected by specular

reflection and transmission in the normal plane; Figure 1.14 illustrates the cases

for the first two values of p.

Following the reasoning from Figure 1.14, we can derive the function Φ, which

gives the net change in azimuthal direction:

Φ(p, h) = 2pγt − 2γo + pπ.

(Recall that γo and γt are derived from h.) Figure 1.15 shows a plot of this

function for p= 1.
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Figure 1.14: For specular reflection, with p= 0, the incident and reflected directions make the same
angle γo, with the surface normal. The net change in angle is thus −2γo. For p= 1, the ray is deflected
from γo to γt when it enters the cylinder and then correspondingly on the way out. We can also see that
when the ray is transmitted again out of the circle, it again makes an angle γo with the surface normal
there. Adding up the angles, the net deflection is 2γt − 2γo + π.

〈Hair Local Functions〉 ≡

inline Float Phi(int p, Float gammaO, Float gammaT) {

return 2 * p * gammaT - 2 * gammaO + p * Pi;

}

Now that we know how to compute new angles in the normal plane after specular

transmission and reflection, we need a way to represent surface roughness, so

that a range of directions centered around the specular direction can contribute

to scattering. The logistic distribution provides a good option: it is a generally

useful one for rendering, since it has a similar shape to the Gaussian (which of

course comes up often in rendering), while also being normalized and integrable

in closed-form (unlike the Gaussian).

The logistic distribution takes a scale factor s, which controls its width:

l(x, s) =
e−x/s

s(1 + e−x/s)2
.

The implementation is straightforward, though it is worth taking the absolute

value of x to avoid numerical instability for when the ratio x/s is relatively
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Figure 1.15: Plot of Φ(p, h) For p= 1. As h varies from −1 to 1, we can see that the range of
orientations φ for the specularly transmitted ray varies rapidly. By examining the range of φ values, we can
see that the possible transmitted directions cover roughly 2/3 of all possible directions on the circle.

large. (The function is symmetric around the origin, so this is mathematically

equivalent.)

〈Hair Local Functions〉 ≡

inline Float Logistic(Float x, Float s) {

x = std::abs(x);

return std::exp(-x / s) / (s * Sqr(1 + std::exp(-x / s)));

}

Because the logistic distribution is normalized, it is its own PDF. Its integral is

reasonably straightforward:
∫

l(x, s) dx=
1

1 + e−x/s
, (1.5)

and the function that implements its CDF follows directly.

〈Hair Local Functions〉 ≡

inline Float LogisticCDF(Float x, Float s) {

return 1 / (1 + std::exp(-x / s));

}

In the following, we’ll find it useful to define a normalized logistic function over

a range [a, b]; we’ll call this the trimmed logistic, lt. (In practice, we’ll always use

the range [−π, π], but will derive the next few functions for arbitrary ranges for

flexibility.)

lt(x, s, [a, b]) =
l(x, s)

∫ b
a l(x′, s) dx′

.

The implementation follows directly using Equation (1.5). Figure 1.16 shows plots

of the trimmed logistic distribution for a few values of s.
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Figure 1.16: Plots of The Trimmed Logistic Function Over ±π. The curve for s= 0.5 (solid line) is
broad and flat, while at s= 0.1 (dashed line), the curve is peaked. Because the function is normalized, the
peak at 0 generally doesn’t have the value 1, unlike the Gaussian.

〈Hair Local Functions〉 ≡

inline Float TrimmedLogistic(Float x, Float s, Float a, Float b) {

return Logistic(x, s) / (LogisticCDF(b, s) - LogisticCDF(a, s));

}

Now we have the pieces to be able to implement the azimuthal scattering

distribution. The Np() function computes the Np term, computing the angular

difference between φ and Φ(p, h) and evaluating the azimuthal distribution with

that angle.

〈Hair Local Functions〉 ≡

inline Float Np(Float phi, int p, Float s, Float gammaO,

Float gammaT) {

Float dphi = phi - Phi(p, gammaO, gammaT);

〈Remap dphi to [−π, π]〉

return TrimmedLogistic(dphi, s, -Pi, Pi);

}

The difference between φ and Φ(p, h) may be outside the range we’ve defined the

logistic over, [−π, π], so we rotate around the circle as needed to get the value to

the right range. Because dphi never gets too far out of range for the small p used

here, we just use the simple approach of adding or subtracting 2π as needed.

〈Remap dphi to [−π, π]〉 ≡

while (dphi > Pi) dphi -= 2 * Pi;

while (dphi < -Pi) dphi += 2 * Pi;

As with the longitudinal roughness, it’s helpful to have a roughly perceptually

linear mapping from azimuthal roughness βn ∈ [0, 1] to the logistic scale factor s.

〈Compute azimuthal logistic scale factor from βn〉 ≡

s = SqrtPiOver8 * (0.265f * beta_n + 1.194f * Sqr(beta_n) +

5.372f * Pow<22>(beta_n));
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Figure 1.17: Polar plots of Np for p= 1 with a low roughness, βn = 0.1, for h=−0.5 (left) and h= 0.3
(right). We can see that Np varies rapidly over the width of the hair.

The mapping uses the constant
√

π/8.

〈HairBSDF Constants〉 ≡

static const Float SqrtPiOver8 = 0.626657069f;

〈HairBSDF Private Data〉 ≡

Float s;

Figure 1.17 shows polar plots of azimuthal scattering for the TT term, p= 1, with

a fairly low roughness. The scattering distributions for the two different points

on the curve’s width are quite different. Because we expect the hair width to be

roughly pixel-sized, many rays per pixel are needed to resolve this variation well.

Figure 1.18 shows renderings of the hair model from Figure 1.1 with a fixed

longitudinal roughness and varying azimuthal roughness. We can see that higher

azimuthal roughness causes the hair to be lighter in color; this is because more

light is able to exit the hair after multiple scattering when the distribution is

broader.

1.3.4 SCATTERING MODEL IMPLEMENTATION

We now have almost all of the pieces we need to be able to evaluate the model.

The last detail is to account for the effect of scales on the hair surface (recall

Figure 1.6). Suitable adjustments to θi work well to model this characteristic of

hair.

For the R term, adding the angle 2α to θi can model the effect of evaluating

the hair scattering model with respect to the surface normal of a scale. We can

then go ahead and evaluate M0 with this modification to θi. For TT, we have

to account for two transmission events through scales. Rotating by α in the

opposite direction approximately compensates. (Because the refraction angle is
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Figure 1.18: Hair Rendered With Varying Azimuthal Roughness. Top βn = 0.3, middle: βn = 0.6,
and bottom: βn = 0.9. In all cases, βm = 0.3. As the longitudinal roughness increases, the hair lightens, as
more multiply-scattered light can exit the hair volume. (Hair geometry courtesy Cem Yuksel.)
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Figure 1.19: The Effect of Scales on Hair. (a) Hair rendered without modeling scales on the hair
surface, α = 0. (b) With α = 2◦, the specular highlights from the p= 0 term (white) and p= 2 (hair
colored) are distinct, and we can now see a secondary hair-colored highlight below the white highlight.
(Hair geometry courtesy Cem Yuksel.)

non-linear with respect to changes in normal orientation, there is some error in

this approximation, though the error is low for the typical case of small values

of α.) TRT has a reflection term inside the hair; a rotation by −4α compensates

for the overall effect.

The effects of these shifts are that the primary reflection lobe R is offset to be

above the perfect specular direction and the secondary TRT lobe is shifted below

it. Together, these lead to two distinct specular highlights of different colors,

since R isn’t affected by the hair’s color, while TRT picks up the hair color due

to absorption. This effect can be seen in human hair. Figure 1.19 shows the visual

result of accounting for the tilted scales.

To support computing these offsets, in the HairBSDF constructor we precompute

sin 2kα and cos 2kα for k = 0, 1, 2. These values can be computed particularly

efficiently using trigonometric double angle identities: cos 2θ = cos2 θ − sin2 θ and

sin 2θ = 2 cos θ sin θ.

〈Compute α terms for hair scales〉 ≡

sin2kAlpha[0] = std::sin(alpha);

cos2kAlpha[0] = SafeSqrt(1 - Sqr(sin2kAlpha[0]));

for (int i = 1; i < 3; ++i) {

sin2kAlpha[i] = 2 * cos2kAlpha[i - 1] * sin2kAlpha[i - 1];

cos2kAlpha[i] = Sqr(cos2kAlpha[i - 1]) - Sqr(sin2kAlpha[i - 1]);

}

〈HairBSDF Private Data〉 ≡

Float sin2kAlpha[3], cos2kAlpha[3];
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Evaluating the model is now mostly just a matter of calling functions that have

already been defined and summing the individual terms fp.

〈Evaluate hair BSDF 〉 ≡

Float phi = phiI - phiO;

std::array<Spectrum, pMax + 1> ap = Ap(cosThetaO, eta, h, T);

Spectrum fsum(0.);

for (int p = 0; p < pMax; ++p) {

〈Compute sin θi and cos θi terms accounting for scales〉

fsum += Mp(cosThetaIp, cosThetaO, sinThetaIp, sinThetaO, v[p]) * ap[p] *

Np(phi, p, s, gammaO, gammaT);

}

〈Compute contribution of remaining terms after pMax〉

if (AbsCosTheta(wi) > 0) fsum /= AbsCosTheta(wi);

return fsum;

As discussed earlier, θi is rotated to model the effect of hair scales. Fortunately

we only need the sine and cosine of the angle θi to evaluate Mp. We can therefore

use the trigonometric identities

sin θ ± α= sin θ cos α± cos θ sin α

cos θ ± α= cos θ cos α∓ sin θ sin α

to efficiently compute the rotated angle, without needing to evaluate any addi-

tional trigonometric functions.

Here we only include the case for p= 0, where θi is rotated by 2α. The remaining

cases follow the same structure. (For p= 1, the rotation is by −α and for p= 2,

−4α.)

〈Compute sin θi and cos θi terms accounting for scales〉 ≡

Float sinThetaIp, cosThetaIp;

if (p == 0) {

sinThetaIp = sinThetaI * cos2kAlpha[1] + cosThetaI * sin2kAlpha[1];

cosThetaIp = cosThetaI * cos2kAlpha[1] - sinThetaI * sin2kAlpha[1];

}

〈Handle remainder of p values for hair scale tilt〉

〈Handle out-of-range cos θi from scale adjustment〉

When ωi is nearly parallel with the hair, the scale adjustment may give a slightly

negative value for cos θi—effectively, in this case, it represents a θi that is slightly

greater than π/2, the maximum expected value of θ in the hair coordinate system.

This angle is equivalent to π− θi, and cos(π− θi) = |cos θi|, so we can easily handle

that here.

〈Handle out-of-range cos θi from scale adjustment〉 ≡

cosThetaIp = std::abs(cosThetaIp);

A final term accounts for all higher-order scattering inside the hair. We just

use a uniform distribution N(φ) = 1/(2π) for the azimuthal distribution; this

is a reasonable choice, as the varied direction offsets from Φ(p, h) for p≥ pmax
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generally have wide variation and the final Ap term generally represents less than

15% of the overall scattering, so little error is introduced in the final result.

〈Compute contribution of remaining terms after pMax〉 ≡

fsum += Mp(cosThetaI, cosThetaO, sinThetaI, sinThetaO, v[pMax]) *

ap[pMax] / (2.f * Pi);

1.3.5 THE “WHITE FURNACE” TEST

We have, we hope, implemented a hair scattering model wherein if hair doesn’t

absorb any of the light passing through it (i.e., σa = 0), then all of the incident

light should be reflected. If such a hair is illuminated with uniform incident

radiance, the reflected radiance should be exactly the same as the incident

radiance. The white furnace test checks this, making sure that reflected radiance is

one given unit incident radiance. Our implementation tests a variety of azimuthal

and longitudinal roughnesses.

〈Hair Tests〉 ≡

TEST(Hair, WhiteFurnace) {

RNG rng;

Vector3f wo = UniformSampleSphere({rng.UniformFloat(),

rng.UniformFloat()});

for (Float beta_m = .1; beta_m < 1; beta_m += .2) {

for (Float beta_n = .1; beta_n < 1; beta_n += .2) {

〈Estimate reflected uniform incident radiance from hair〉

}

}

}

For each roughness, we compute a Monte Carlo estimate of the spherical–

directional reflectance,
∫

S2
f(ωo, ωi) |cos θi| dωi.

Each sample is evaluated by first sampling a random offset along the hair h and

then computing the fraction of reflected radiance for a random incident direction.

〈Estimate reflected uniform incident radiance from hair〉 ≡

Spectrum sum = 0.f;

int count = 300000;

for (int i = 0; i < count; ++i) {

Float h = -1 + 2. * rng.UniformFloat();

Spectrum sigma_a = 0.f;

HairBSDF hair(h, 1.55, sigma_a, beta_m, beta_n, 0.f);

Vector3f wi = UniformSampleSphere({rng.UniformFloat(),

rng.UniformFloat()});

sum += hair.f(wo, wi) * AbsCosTheta(wi);

}

Float avg = sum.y() / (count * UniformSpherePdf());

EXPECT_TRUE(avg >= .95 && avg <= 1.05);
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The WhiteFurnaceSampled test, not included here, uses the Sample_f() method

(which will be defined shortly) to sample incident directions rather than a uniform

distribution, dividing BSDF values by the PDF to compute the estimate of

reflectance. It uses a tighter tolerance (1± .01) than the first white furnace test,

since importance sampling gives much faster convergence than uniform sampling

over the sphere. (Note, however, that it’s useful to have both variants of this test:

if there was a bug in the importance sampling code and the second white furnace

test failed, we wouldn’t know whether the bug was in the sampling code or how

the hair BSDF computed reflection. This way, if one white furnace test fails or

both fail, we can have a better idea of whether the underlying problem is in the

evaluation of the model or in the code that samples it.)

1.4 IMPORTANCE SAMPLING

Being able to generate sampled directions and compute the PDF for sampling

a given direction according to a distribution that is similar to the overall BSDF

is critical for efficient rendering, especially at low roughnesses, where the hair

BSDF varies rapidly as a function of direction. In the approach implemented

here, samples are generated with a two step process: first we choose a p term to

sample according to a probability based on each term’s Ap function value, which

gives its contribution to the overall scattering function. Then, we find a direction

by sampling the corresponding Mp and Np terms. Fortunately, both the Mp and

Np terms of the hair BSDF can be sampled perfectly, leaving us with a sampling

scheme that exactly matches the PDF of the full BSDF.

1.4.1 COMPUTING ADDITIONAL SAMPLE VALUES

In the following, we’ll need a total of four random samples to sample the direction

wi. This presents a challenge in that only two sample values are passed into pbrt’s

BxDF::Sample_f() interface. One option would be to modify the interfaces to

provide more sample values, though these would be unused by all of the other BxDF

implementations; rendering efficiency would suffer from the time to generate these

unused samples, and rendering quality would also likely suffer, as many Samplers

generate better samples in the lower dimensions than in higher dimensions; these

extra samples would usually be wasted.

Therefore, here we’ll implement an approach that lets us extract two separate

samples from each provided sample. The DemuxFloat() function, to be defined

shortly, decomposes a sample ξ ∈ [0, 1) into a pair of samples, while also making

some effort to preserve stratification in the returned sample value.

To understand the operation of DemuxFloat(), first recall the discussion of the

Morton curve in Section 4.3.3. The Morton curve is a space-filling 1D curve that

maps real numbers in [0, 1] to n-dimensional numbers [0, 1]n. If we use a 1D sample

value ξ as an offset into a Morton curve, we can use each of the dimensions’ values

as independent samples.
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An important advantage of using a Morton curve for this task is that it preserves

stratification in the sample values it returns. To see why this is so, consider

a collection of four stratified 1D sample values (i.e., one in [0, 1/4), one in

[1/4, 1/2), and so forth.) The first sample value will be mapped mapped to a

point in [0, 1/2)× [0, 1/2) by the Morton curve, since the first quarter of the 2D

Morton curve traces out that region of space in two dimensions. Similarly, the

next stratified 1D sample will be in the range [1/2, 1)× [0, 1/2), and so on.

To help with this, the Compact1By1() function takes a 32-bit integer, deletes all of

the bits with odd indices, and compacts the remaining bits. The comment lines

in the implementation illustrate the effect of each operation: after the surviving

bits are initially masked off, a series of masked shifts compacts them until they

are in contiguous positions.4

〈General Utility Functions〉 ≡

static uint32_t Compact1By1(uint32_t x) {

// x = -f-e -d-c -b-a -9-8 -7-6 -5-4 -3-2 -1-0

x &= 0x55555555;

// x = --fe --dc --ba --98 --76 --54 --32 --10

x = (x ^ (x >> 1)) & 0x33333333;

// x = ---- fedc ---- ba98 ---- 7654 ---- 3210

x = (x ^ (x >> 2)) & 0x0f0f0f0f;

// x = ---- ---- fedc ba98 ---- ---- 7654 3210

x = (x ^ (x >> 4)) & 0x00ff00ff;

// x = ---- ---- ---- ---- fedc ba98 7654 3210

x = (x ^ (x >> 8)) & 0x0000ffff;

return x;

}

Here, we’ll treat the sample ξ as a fixed-point value v computed by multiplying

by 232. The 2D Morton curve effectively takes alternating bits from this value,

giving two values between 0 and 216. In turn, these are mapped back to Floats.

〈General Utility Functions〉 ≡

static Point2f DemuxFloat(Float f) {

uint64_t v = f * (1ull << 32);

uint32_t bits[2] = {Compact1By1(v), Compact1By1(v >> 1)};

return {bits[0] / Float(1 << 16), bits[1] / Float(1 << 16)};

}

1.4.2 A DISTRIBUTION FOR SAMPLING P

Next, we’ll define the ComputeApPdf() method, which returns a discrete PDF with

probabilities for sampling each term Ap according to its contribution relative to

all of the Ap terms, given θo.

4 This code is thanks to Fabian Giesen, fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/ .
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〈HairBSDF Method Definitions〉 ≡

std::array<Float, pMax + 1> HairBSDF::ComputeApPdf(Float cosThetaO) const {

〈Compute array of Ap values for cosThetaO〉

〈Compute Ap PDF from individual Ap terms〉

return apPdf;

}

The method starts by computing the values of Ap for cosThetaO. We’re able to

reuse some previously-defined fragments to make this task easier.

〈Compute array of Ap values for cosThetaO〉 ≡

Float sinThetaO = SafeSqrt(1 - cosThetaO * cosThetaO);

〈Compute cos θt for refracted ray〉

〈Compute γt for refracted ray〉

〈Compute the transmittance T of a single path through the cylinder〉

std::array<Spectrum, pMax + 1> ap = Ap(cosThetaO, eta, h, T);

Next, the spectral Ap values are converted to scalars using their luminance and

these values are normalized to make a proper PDF.

〈Compute Ap PDF from individual Ap terms〉 ≡

std::array<Float, pMax + 1> apPdf;

Float sumY = std::accumulate(ap.begin(), ap.end(), Float(0),

[](Float s, const Spectrum &ap) { return s + ap.y(); });

for (int i = 0; i <= pMax; ++i)

apPdf[i] = ap[i].y() / sumY;

1.4.3 SAMPLING INCIDENT DIRECTIONS

With these preliminaries out of the way, we can now implement the Sample_f()

method.

〈HairBSDF Method Definitions〉 ≡

Spectrum HairBSDF::Sample_f(const Vector3f &wo, Vector3f *wi,

const Point2f &u2, Float *pdf, BxDFType *sampledType) const {

〈Compute hair coordinate system terms related to wo〉

〈Derive four random samples from u2〉

〈Determine which term p to sample for hair scattering〉

〈Sample Mp to compute θi〉

〈Sample Np to compute ∆φ〉

〈Compute wi from sampled hair scattering angles〉

〈Compute PDF for sampled hair scattering direction wi〉

return f(wo, *wi);

}

〈Derive four random samples from u2〉 ≡

Point2f u[2] = { DemuxFloat(u2[0]), DemuxFloat(u2[1]) };

Given the PDF over Ap terms, we just loop over PDF values until we find the first

value of p where the sum of preceding PDF values is greater than the sample value.

Because we only need to generate one sample from the PDF’s distribution, the



30 THE IMPLEMENTAT ION OF A HA IR SCATTER ING MODEL CHAPTER 1

work to compute an explicit CDF array (for example, by using Distribution1D)

isn’t worthwhile.

〈Determine which term p to sample for hair scattering〉 ≡

std::array<Float, pMax + 1> apPdf = ComputeApPdf(cosThetaO);

int p;

for (p = 0; p < pMax; ++p) {

if (u[0][0] < apPdf[p]) break;

u[0][0] -= apPdf[p];

}

Now that we’ve chosen a term, we can sample the correspondingMp term given θo
to find θi. The derivation of this sampling method is fairly involved, so we’ll nei-

ther include the derivation nor the implementation here. This fragment, 〈Sample

Mp to compute θi〉, consumes both of the sample values u[1][0] and u[1][1]

and initializes variables sinThetaI and cosThetaI according to the sampled di-

rection. After sampling a direction θi, this fragment then applies the inverse of

the rotation that will later be used to account for hair scales when the BSDF is

evaluated.

Next we’ll sample the azimuthal distribution Np. For terms up to pmax, we take

a sample from the logistic distribution centered around the exit direction given

by Φ(p, h). For the last term, we sample from a uniform distribution.

〈Sample Np to compute ∆φ〉 ≡

〈Compute γt for refracted ray〉

Float dphi;

if (p < pMax)

dphi = Phi(p, gammaO, gammaT) +

SampleTrimmedLogistic(u[0][1], s, -Pi, Pi);

else

dphi = 2 * Pi * u[0][1];

By inverting the CDF of the trimmed logistic, we can derive the recipe to sample

from its distribution given a random variable ξ ∈ [0, 1):

ξ =

∫ x

a
lt(x

′, s, [a, b]) dx′

=
1

∫ b
a l(x, s) dx

∫ x

a
l(x′, s) dx′

=
1

∫ b
a l(x, s) dx

(

1

1 + e−x/s
−

1

1 + e−a/s

)

.

With a bit of algebra, we can solve for x:

x=−s log





1

ξ
∫ b
a l(x, s) dx+ 1

1+e−a/s

− 1



 .



SECTION 1.4 IMPORTANCE SAMPL ING 31

In practice, due to floating-point round-off, the implementation may compute an

infinite value when ξ → 1; a clamp at the end ensures that the returned value is

in the range [a, b].

〈Hair Local Functions〉 ≡

static Float SampleTrimmedLogistic(Float u, Float s, Float a,

Float b) {

Float k = LogisticCDF(b, s) - LogisticCDF(a, s);

Float x = -s * std::log(1 / (u * k + LogisticCDF(a, s)) - 1);

return Clamp(x, a, b);

}

Given θi and φi, we can compute the sampled direction wi. The math is similar

to the SphericalDirection() function defined on p. 346, but with two impor-

tant differences. First, because here θ is measured with respect to the plane

perpendicular to the cylinder rather than the cylinder axis, we need to compute

cos(π/2− θ) = sin θ for the coordinate with respect to the cylinder axis instead

of cos θ. Second, because the hair shading coordinate system’s (θ, φ) coordinates

are oriented with respect to the +x axis, the order of dimensions passed to the

Vector3f constructor is adjusted correspondingly, since the direction returned

from Sample_f() should be in the BSDF coordinate system.

〈Compute wi from sampled hair scattering angles〉 ≡

Float phiI = phiO + dphi;

*wi = Vector3f(sinThetaI, cosThetaI * std::cos(phiI),

cosThetaI * std::sin(phiI));

Because we could sample directly from the Mp and Np distributions, the overall

PDF is

pmax
∑

p=0

Mp(θo, θi)Ãp(ωo)Np(φ),

where Ãp are the normalized luminance-weighted PDF terms. Note that θi must

be shifted to account for hair scales when evaluating the PDF; this is done in the

same way (and with the same code fragment) as when the BSDF was evaluated.

〈Compute PDF for sampled hair scattering direction wi〉 ≡

*pdf = 0;

for (int p = 0; p < pMax; ++p) {

〈Compute sin θi and cos θi terms accounting for scales〉

*pdf += Mp(cosThetaIp, cosThetaO, sinThetaIp, sinThetaO, v[p]) *

apPdf[p] * Np(dphi, p, s, gammaO, gammaT);

}

*pdf += Mp(cosThetaI, cosThetaO, sinThetaI, sinThetaO, v[pMax]) *

apPdf[pMax] * (1 / (2 * Pi));

The HairBSDF::Pdf() method performs the same computation was we just imple-

mented for Sample_f(). Therefore, the implementation isn’t included here.
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1.4.4 TESTING SAMPLING ROUTINES

Because the sampling routine we have implemented exactly matches the PDF of

the underlying BSDF, if we generate samples from the BSDF using Sample_f(),

then the ratio between the BSDF value and the PDF computed for this direction

should be one (as long as there is no absorption in the hair). The SamplingWeights

test checks this for a variety of roughnesses and random sample values.

〈Hair Tests〉 ≡

TEST(Hair, SamplingWeights) {

RNG rng;

for (Float beta_m = .1; beta_m < 1; beta_m += .2)

for (Float beta_n = .4; beta_n < 1; beta_n += .2) {

int count = 10000;

for (int i = 0; i < count; ++i) {

〈Check HairBSDF::Sample_f() sample weight〉

}

}

}

Performing the test is mostly a matter of setting up enough context to call Sample_

f() and then verifying the ratio of the BSDF and the PDF.

〈Check HairBSDF::Sample_f() sample weight〉 ≡

Float h = -1 + 2 * rng.UniformFloat();

Spectrum sigma_a = 0;

HairBSDF hair(h, 1.55, sigma_a, beta_m, beta_n, 0.f);

Vector3f wo = UniformSampleSphere({rng.UniformFloat(), rng.UniformFloat()});

Vector3f wi;

Float pdf;

Point2f u = {rng.UniformFloat(), rng.UniformFloat()};

Spectrum f = hair.Sample_f(wo, &wi, u, &pdf, nullptr);

if (pdf > 0) {

〈Verify that hair BSDF sample weight is close to 1 for wi〉

}

Note that we accept a small amount of error, accepting values that are close to

one but not exactly equal to it, in order to allow for floating-point round-off error.

〈Verify that hair BSDF sample weight is close to 1 for wi〉 ≡

EXPECT_GT(f.y() * AbsCosTheta(wi) / pdf, 0.999);

EXPECT_LT(f.y() * AbsCosTheta(wi) / pdf, 1.001);

Another useful test is based on computing reflected radiance from a varying

incident radiance function with the scattering equation, Equation (5.9) in the

third edition. Given a sufficient number of samples, we should get the same result

both if we use the custom importance sampling scheme we have implemented and

if we use a uniform distribution of directions over the unit sphere. This case is

tested with the SamplingConsistency test.
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〈Hair Tests〉 ≡

TEST(Hair, SamplingConsistency) {

RNG rng;

for (Float beta_m = .2; beta_m < 1; beta_m += .2)

for (Float beta_n = .4; beta_n < 1; beta_n += .2) {

〈Declare variables for hair sampling test〉

for (int i = 0; i < count; ++i) {

〈Compute estimates of scattered radiance for hair sampling test〉

}

〈Verify consistency of estimated hair reflected radiance values〉

}

}

The Li lambda function defines an incident radiance function with some (but not

too much) variation as a function of direction. We keep this function fairly simple

so that sampling the BSDF alone works well to compute reflected radiance and

we can avoid the complexity of implementing multiple importance sampling in

the test here.

〈Declare variables for hair sampling test〉 ≡

const int count = 64*1024;

Spectrum sigma_a = .25;

Vector3f wo = UniformSampleSphere({rng.UniformFloat(), rng.UniformFloat()});

auto Li = [](const Vector3f &w) -> Spectrum {

return w.z * w.z;

};

Spectrum fImportance = 0, fUniform = 0;

For each sample in the Monte Carlo estimate, we choose a random point on the

hair and use a pair of random numbers to sample an incident direction. We then

use the regular Monte Carlo estimator to compute estimates using both sampling

approaches.

〈Compute estimates of scattered radiance for hair sampling test〉 ≡

Float h = -1 + 2 * rng.UniformFloat();

HairBSDF hair(h, 1.55, sigma_a, beta_m, beta_n, 0.f);

Vector3f wi;

Float pdf;

Point2f u = {rng.UniformFloat(), rng.UniformFloat()};

Spectrum f = hair.Sample_f(wo, &wi, u, &pdf, nullptr);

if (pdf > 0) fImportance += f * Li(wi) * AbsCosTheta(wi) / (count * pdf);

wi = UniformSampleSphere(u);

fUniform += hair.f(wo, wi) * Li(wi) * AbsCosTheta(wi) /

(count * UniformSpherePdf());

In the end, the two estimates should be very close. Here we treat 5% relative

error as good enough to pass the test; this is a fairly low bar, but it allows the

test to run quickly—if the total number of samples count was higher, we could

expect closer agreement, but we prefer to have a test that runs in a second or so.
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〈Verify consistency of estimated hair reflected radiance values〉 ≡

Float err = std::abs(fImportance.y() - fUniform.y()) / fUniform.y();

EXPECT_LT(err, 0.05);

1.5 HAIR ABSORPTION COEFFICIENTS

The color of hair is determined by how pigments in the cortex absorb light, which

in turn is described by the normalized absorption coefficient where distance is

measured in terms of the hair diameter. If a specific hair color is desired, there’s

a non-obvious relationship between the normalized absorption coefficient and the

color of hair in a rendered image. Not only does changing the spectral values of

the absorption coefficient have an unpredictable connection to the appearance of

a single hair, but as we saw in Figure 1.2, multiple scattering between collections

of many hairs has a significant effect each one’s apparent color.5 Therefore, here

we provide implementations of two more intuitive ways to specify hair color.

The color of human hair is determined by the concentration of two pigments.

The concentration of eumelanin is the primary factor that causes the difference

between black, brown, and blonde hair. (Black hair has the most eumelanin

and blonde hair has the least. White hair has none.) The second pigment,

pheomelanin, causes hair to be orange or red. The HairBSDF class provides a

convenience method that computes an absorption coefficient using the product of

user-supplied pigment concentrations and absorption coefficients of the pigments

computed by d’Eon et al. (2011), based on a model by Donner and Jensen (2006).

〈HairBSDF Method Definitions〉 ≡

Spectrum HairBSDF::SigmaAFromConcentration(Float ce, Float cp) {

Float sigma_a[3];

Float eumelaninSigmaA[3] = {0.419f, 0.697f, 1.37f};

Float pheomelaninSigmaA[3] = {0.187f, 0.4f, 1.05f};

for (int i = 0; i < 3; ++i)

sigma_a[i] = (ce * eumelaninSigmaA[i] +

cp * pheomelaninSigmaA[i]);

return Spectrum::FromRGB(sigma_a);

}

Eumelanin concentrations of roughly 8, 1.3, and 0.3 give reasonable representa-

tions of black, brown, and blonde hair, respectively.

It’s also useful to specify the desired hair color directly. In order to make this

possible, Chiang et al. (2016) created a cube of hair and rendered it with

a variety of absorption coefficients and roughnesses, while it was illuminated

with a uniform white dome. They then fit a function that mapped from the

hair’s azimuthal roughness and average color at the center of the front face

5 These issues are both related to those that make it difficult to directly set scattering and absorption coefficients for subsurface scattering, as

discussed along with the SubsurfaceFromDiffuse() function defined on p. 938.
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Figure 1.20: Two Spheres With Diffuse BSDFs Next To “Hair Cubes”. The cubes are
made of 100 × 100 densely packed Curves, with hair absorption coefficients computed using
SigmaAFromReflectance(). Top, a RGB color of (0.8, 0.4, 0.05) and a longitudinal roughness βn
of 0.3 was used; the computed σa value was (0.003, 0.046, 0.488). Below, RGB was (0.2, 0.8, 0.3) and
βn = 0.8, giving a σa value of (0.141, 0.003, 0.079). In both cases, there is good agreement between the
color of the sphere and the hair.

of the cube to an absorption coefficient. (Unlike the azimuthal roughness, the

longitudinal roughness doesn’t meaningfully affect the hair’s color.) This function

is implemented in the SigmaAFromReflectance() method; see Figure 1.20 for

examples.

〈HairBSDF Method Definitions〉 ≡

Spectrum HairBSDF::SigmaAFromReflectance(const Spectrum &c, Float beta_n) {

Spectrum sigma_a;

for (int i = 0; i < Spectrum::nSamples; ++i)

sigma_a[i] = Sqr(std::log(c[i]) /

(5.969f - 0.215f * beta_n + 2.532f * Sqr(beta_n) -

10.73f * Pow<3>(beta_n) + 5.574f * Pow<4>(beta_n) +

0.245f * Pow<5>(beta_n)));

return sigma_a;

}

1.6 HAIR MATERIAL

Like most Materials in pbrt, the HairMaterial is pretty straightforward; it’s

mostly a matter of evaluating textures and creating a corresponding HairBSDF
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object. It allows the attenuation coefficient for the hair interior to be specified

with one of three ways; the corresponding parameters are:

•“spectrum sigma a”: the absorption coefficient can be specified directly.
•“spectrum reflectance”: a reflectance for SigmaAFromReflectance().
•“float eumelanin” and/or “float pheomelanin”: eumelanin and pheomelanin

concentrations.

Only one of these approaches can be used; an error is issued if more than one is

provided. If none is specified, an eumelanin concentration of 1.3 is used, giving a

brownish color.

A few additional parameter are supported

•“float beta m”, “float beta n”: longitudinal and azimuthal roughnesses.

Both default to 0.3.
•“float eta”: index of refraction of the hair interior. (1.55 by default).
•“float alpha”: hair scale angle in degrees (2 by default).

1.7 A NOTE ON RECIPROCITY

On p. 350 in the third edition of Physically Based Rendering , we noted that

physically-based BRDFs are both reciprocal and energy conserving. (In particu-

lar, reciprocity means that swapping the two evaluation directions gives the same

BRDF value: f(ωo, ωi) = f(ωi, ωo).) BTDFs are in general not reciprocal, how-

ever; this topic (and methods to address it) is discussed further on p. 960 when

bidirectional light transport algorithms are introduced.

The model we have implemented is, unfortunately, not reciprocal. One immediate

issue is that the rotation for hair scales is applied only to θi. However, there are

more problems: first, all terms p > 0 that involve transmission are not reciprocal;

the underlying issue is that the transmission terms use values based on ωt, which

itself only depends on ωo. Thus, if ωo and ωi are interchanged, a completely

different ωt is computed, which in turn leads to different cos θt and γt values,

which in turn give different values from the Ap and Np functions.

Many earlier hair scattering models have worked around the lack of reciprocity

due to cos θt by computing an angle θd = (θo − θi)/2 and using that in place of

θo when computing θt and related quantities. (Note that θd is symmetric, since

it’s measuring angles with respect to the normal plane.) We didn’t use θd in our

implementation for two reasons: first, when we’re sampling the BSDF, only ωo

is known and thus θd can’t be computed. In turn, θo must be used to generate

the PDF of Ap terms. Later, when ωi is known and the BSDF is evaluated,

a different value of Ap would be computed than was used for sampling. This

mismatch between function value and PDF can cause a variance spike.6

6 Previous approaches have addressed this issue by clamping the maximum ratio of function value and PDF, though doing so loses energy.
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Second, even if θd is used, there is a second, subtle and more difficult, source

of non-reciprocity. Recall that the position h along the curve width is computed

based on finding the intersection of a ray with a ribbon oriented to face the ray.

It is thus directly dependent on ωo and independent of ωi. In turn, because γo
and γt depend on h, they depend on ωo alone and thus reciprocity is lost. The

models developed by Marschner et al. (2003) and d’Eon et al. (2011) didn’t have

this problem since both computed a BCSDF by integrating h across the curve

width. As noted by Chiang et al. (2016), this integration is computationally

expensive, especially with low azimuthal roughnesses where the function varies

quickly and many evaluations are needed for deterministic quadrature methods

(recall Figure 1.17).

Another option would be to integrate stochastically, sampling a random h. (In

turn, any given evaluation of f wouldn’t be reciprocal, but the expected value

over a sum of many evaluations would be.) This approach doesn’t fit well with

pbrt’s current architecture, where no random sample values are made available

to the BSDF::f() method. Changing this would require a fairly extensive set of

code modifications and seems generally unappealing.

A final possibility would be to compute a hi for ωi, based on projecting the

intersection point up to the surface of the cylinder and then finding hi for a ray

with direction ωi that passes through the hit point. In turn, we could evaluate

Ap and Np twice for each ordering of directions and take the average. This is

relatively straightforward (and hi can be found working entirely in the azimuthal

plane), but in turn may lead to noise spikes, as one of the evaluations may have

a much larger value than the current implementations of the sampling and PDF

methods expect.

Stuck for an elegant solution, we will leave this issue to an exercise and hope that

future research on this topic addresses this issue. In practice, we haven’t seen

visual artifacts in rendered images from the lack of reciprocity.

1.8 FURTHER READING

Kajiya and Kay (1989) were the first to develop a hair scattering model for

rendering. Their model combined a diffuse term with a Phong lobe for an

empirical model of specular highlights.

Marschner et al. (2003) investigated the processes underlying scattering from hair

and performed a variety of measurements of scattering from actual hair. They

introduced the longitudinal/azimuthal decomposition and the use of the modified

index of refraction to hair rendering. They then developed a scattering model

where the longitudinal component was derived by first considering perfectly

specular paths and then allowing roughness by centering a Gaussian around them,

and their azimuthal model assumed perfectly specular reflections. They showed

that this model agreed reasonably well with their measurements.

Zinke and Weber (2007) formalized different ways of modeling scattering from

hair and clarified the assumptions underlying each of them. Starting with the
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bidirectional fiber scattering distribution function (BFSDF), which describes

reflected differential radiance at a point on a hair as a fraction of incident

differential power at another, they showed how assuming homogeneous scattering

properties and a far away viewer and illumination made it possible to simplify

the eight-dimensional BFSDF to a four-dimensional bidirectional curve scattering

distribution (BCSDF).

d’Eon et al. (2011) made a number of improvements to Marschner et al.’s model.

They showed that their Mp term wasn’t actually energy conserving and derived a

new one that was; this is the model from Equation (1.3) that our implementation

uses. (See also d’Eon (2013) for a more numerically stable formulation of Mp for

low roughness.) They also introduced a Gaussian to the azimuthal term, allowing

for varying azimuthal roughness. A 1D quadrature method was used to integrate

the model across the width of the hair h.

Being able to generate samples from a distribution that approximates the BSDF

is important for efficient rendering. Hery and Ramamoorthi (2012) showed how

to sample the first term of the Marschner et al. model, and d’Eon et al. (2013)

showed how to sample all terms of their improved model. (See also Jakob (2012)

for notes related to sampling their Mp term in a numerically stable way.)

d’Eon et al. (2014) performed extensive Monte Carlo simulations of scattering

from dielectric cylinders with explicitly modeled scales and glossy scattering at

the boundary based on a Beckmann microfacet distribution. They showed that

separable models didn’t model all of the observed effects and that in particular

that the specular term modeled by Mp varies over the surface of the cylinder and

also depends on φ. They developed a non-separable scattering model, where both

α and βm varied as a function of h, and showed that it fit their simulations very

accurately.

All of the scattering models we have described so far have been BCSDFs—they

represent the overall scattering across the entire width of the hair in a single

model. Such “far field” models assume that both the viewer is far away and that

incident illumination is uniform across the hair’s width. In practice, both of these

assumptions are invalid if one is using path tracing to model multiple scattering

inside hair. Two recent models have considered scattering at a single point along

the hair’s width, making them more suitable for accurately modeling “near field”

scattering.

Yan et al. (2015) generalized d’Eon et al.’s model to account for scattering in

the medulla, modeling a scattering cylinder in the interior of fur. They validated

their model with a variety of measurements of actual animal fur, and showed how

previous hair scattering models didn’t match measured fur scattering well. Their

model didn’t integrate across the hair width.

Chiang et al. (2016) showed a number of comparisons that eliminating the

integral over width from d’Eon et al.’s model works well in practice, and that the

sampling rates necessary for path tracing also worked well to integrate scattering

over the curve width, giving a much more efficient implementation. They also

developed the perceptually-uniform parameterization of βm and βn that we have
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implemented here as well as the inverse mapping from reflectance to σa used in

our HairBSDF::SigmaAFromReflectance() method.
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1.11 EXERCISES

1.1 Marschner et al. (2003) note that human hair actually has an elliptical

cross section that causes glints in human hair due to caustics. Extend

the implementation here to handle this case. One issue that you’ll need

to address is that the ∂p/∂v returned by Curve::Intersect() is always
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perpendicular to the incident ray, which leads to different orientations

of the azimuthal coordinate system. This isn’t an issue for the model we

have implemented here, since it operates only on the difference between

angles φ in the hair coordinate system. For elliptical hairs, a consistent

azimuthal coordinate system is necessary.

1.2 Ogaki et al. (2010) created an explicit geometric model of the cuticle

surface and then shot a large number of rays at it for each of a set

of discrete outgoing directions, modeling scattering at the boundary

with a microfacet model and modeling absorption and scattering in

the hair interior. They then created a tabular representation of the

resulting scattering distribution and used it for rendering. Implement

this approach and compare the result to the model here.

1.3 As discussed in “A Note on Reciprocity”, the model implemented in this

document doesn’t obey reciprocity. Investigate this issue and derive an

improved model that does.

1.4 Read Yan et al.’s paper on fur scattering (2015) and implement their

model, which accounts from scattering in the medulla in fur. Render

images that show the difference from accounting for this in comparison

to the current implementation. You may want to also see Section 4.3

of Chiang et al. (2016), which discusses extensions for modeling the

undercoat (which is shorter and curlier hair underneath the top level)

and a more ad-hoc approach to account for the influence of scattering

from the medulla.

1.5 Read the paper by d’Eon et al. (2014) on a non-separable hair scattering

model and implement their approach in pbrt. Render images that show

the difference between their approach and the current implementation.

1.12 REVISION HISTORY

October 16, 2016: original version posted.

November 5, 2016: very minor typos fixed.


