
01 THE IMPLEMENTATION OF A
SCALABLE TEXTURE CACHE

Matt Pharr

5 March 2017

Abstract

Texture caching—loading rectangular tiles of texture maps on demand and keeping

a fixed number of them cached in memory—has proven to be an effective approach

for limiting memory use when rendering complex scenes; scenes with gigabytes

of texture can often be rendered with just tens or hundreds of megabytes of

texture resident in memory. However, implementing an efficient texture cache

is challenging in the presence of tens of rendering threads; each traced ray

generally performs multiple cache lookups, one for each texel accessed during

texture filtering, all while new tiles are being added to the cache and old tiles are

recycled. Traditional thread synchronization approaches based on mutexes give

poor parallel scalability with this workload.

We present a texture cache implementation based on lock-free algorithms and the

“read-copy update” technique, and show that it scales linearly up to (at least) 32

threads. Our implementation performs just as well as pbrt does with preloaded

textures where there are no such cache maintenance complexities.

Note: This document describes new functionality that may be included in a

future version of pbrt. The implementation is available in the texcache branch

in the pbrt-v3 repository on github. We’re interested in feedback (especially bug

reports) about our implementation; please send a note to authors@pbrt.org or

post to the pbrt Google Groups list if you have comments or questions. (Given

that the implementation does some fairly tricky things to minimize locking and

inter-thread coordination, it is entirely possible that subtle bugs remain.)



1.1 INTRODUCTION

Most visually complex computer graphics scenes make extensive use of tex-

ture maps to represent variation in surface appearance. Scenes used in movie

production often have hundreds of gigabytes of texture data—much more than

can fit into system memory on most computers. Therefore, production render-

ers generally use a texture cache that keeps a relatively small fixed amount of

recently-accessed texture data in memory (e.g. tens or hundreds of megabytes),

making it possible to render such scenes using a reasonable amount of memory.

Texture caching originated in Pixar’s RenderMan renderer. Peachey’s technical

memo (1990) describing the idea remains an excellent reference. The key insight

that explains why texture caching works well is the Principle of Texture Thrift ,

which Peachey credits to Pat Hanrahan:

Given a scene consisting of textured 3D surfaces, the amount of texture infor-

mation minimally required to render an image of the scene is proportional to the

resolution of the image and is independent of the number of surfaces and the size

of the textures.

To see why this principle is valid, first recall that texture filtering algorithms like

trilinear filtering and EWA access a bounded number of texels for each filtered

value, regardless of the image map’s resolution. Further, in a path tracer, the

number of points where texture lookups are performed is proportional to the

total number of image samples times the average path length; it isn’t related to

the scene’s geometric complexity. Together, these bound the amount of texture

data required.

As an extreme example of this principle, consider a quadrilateral with an 8k× 8k

texture map, but where the quad only covers one pixel’s area in the image; we

would expect the texture filtering code to only use the highest MIP map level to

compute its color—thus, only a single texel is needed, in spite of the texture’s

full resolution.

Not only is the number of texels needed proportional to the image (not texture)

resolution, but texture accesses also exhibit good spatial and temporal locality,

which allows small caches of texture data to be effective. Spatial locality comes as

a wonderful side-effect of high-quality texture filtering for anti-aliasing. Consider

rendering a 1024× 1024 image of a quadrilateral that just fills the screen using one

sample per pixel: because MIP-mapping matches the texture’s frequency content

to the rate at which it is being sampled, we expect that even if a 4096 × 4096

texture map is applied to the quad, all texel accesses will still come from the MIP

pyramid level with 1024 × 1024 resolution; no other levels are needed. In general,

adjacent image samples will access adjacent (and partially overlapping) texels.

Accesses to texels will be dense, without gaps between them—if there were gaps,

then aliasing would result, since gaps would imply that the texel sampling rate

was lower than the frequency content of the texels.

As far as temporal locality, consider how the ray tracer would access texels in

the texture map for the full-screen quad scene: recall that with most Integrators,



SECTION 1.1 INTRODUCT ION 3

pbrt renders images in 16× 16 pixel tiles, scanning across the image from left-

to-right, top-to-bottom. If we consider the resulting texel access patterns, we can

see that after its first access, a given texel will likely be accessed again a few

more times in the near future, and possibly again during the next line of buckets,

but then never again. Thus, we can have a sense that storing a recently-accessed

subset of the texture will be effective.

Of course, these examples are ideal scenarios for texture caching; in practice,

access patterns will generally be less regular due to objects being partially

occluded by other objects, rays following multiple bounces for global illumination,

textures reused in multiple parts of the scene, and so forth. In the following,

we’ll see that calculating ray differentials for indirect rays of all types—not just

specular, but diffuse and glossy as well—is critical for maintaining texture spatial

coherence so that the texture cache performs well.

In the following, we will see that texture caching gives three main advantages:

•Faster startup: MIP maps are computed ahead of time, and no texels need

to be read from disk as the scene is being initialized.
•Loading only what is needed: texture that is never used isn’t read into

memory; such texture comes from both hidden geometry and MIP levels

that aren’t accessed.
•Limited memory use: thanks to locality of reference, a small texture cache

usually performs well.

The main challenge in implementing a texture cache is to do all this efficiently

even with tens (or more) of rendering threads—many texture cache lookups are

generally performed for each ray, while texture tiles are also being added to and

removed from the cache concurrently. Implementing a texture cache that provides

good parallel scalability—performance that scales well with the number of threads

used—requires careful attention to minimizing points of mutual exclusion among

the threads.

1.1.1 USING CACHED TEXTURES IN PBRT

Using cached textures when rendering with pbrt is fairly straightforward. First,

convert preexisting textures that you’d like to have managed with the texture

cache to pbrt’s custom texture format using the imgtool utility:

% imgtool maketiled tex.png tex.txp

pbrt uses the “txp” extension for its cached texture format; these files not

only include all of the MIP map levels, but also have the images arranged

in rectangular tiles for the texture cache. imgtool maketiled takes an optional

--wrap parameter to specify how to handle out-of-bounds texel accesses while

resampling the image to create the MIP maps; options include “clamp”, “repeat”,

and “black”.

Next, modify your pbrt scene files to update the filenames referring to these

textures with the new “txp” ones. (Note: only “image” textures support texture

caching; image maps used for HDR environment maps, projection light sources,



4 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

etc., must be one of the regular formats supported by pbrt—EXR, PFM, PNG,

or TGA.)

By default, pbrt uses a 96 MB texture cache. The --texcachemb command line

option can be used to specify a different size.

1.2 MODIFICATIONS ELSEWHERE IN PBRT

In order to keep this document focused on the texture cache implementation, we’ll

give an overview of the changes elsewhere in pbrt’s texture-related code that made

it possible to add a texture cache, but won’t include their implementations here.

1.2.1 IMAGE CLASS

The Image class, also a new addition in the texcache branch, stores 2D images in

memory, using efficient 8- and 16- bit encodings when applicable. (For example,

when an 8-bit PNG image is used, only a single byte is used for each image

channel. It can be found in the files core/image.h and core/image.cpp. In contrast,

pbrt-v3 and previous used 32-bit floats to store all image data.) When a

particular texel in an Image is accessed, its value is converted to a Float or

Spectrum, depending on the caller’s request.

The Image class implementation isn’t directly used in the texture cache code we

will describe in this document, but there are two related additions that are used.

First, the PixelFormat enumeration records the format of in-memory image data.

For example, RGB8 corresponds to 8-bit-per-channel RGB data, linearly mapped

from [0, 255] to [0, 1]. SRGB8 is the same, but where texels are also encoded with

the SRGB gamma curve. The “Y” formats encode just a single channel.

〈PixelFormat Declarations〉 ≡
enum class PixelFormat { SY8, Y8, RGB8, SRGB8, Y16, RGB16, Y32, RGB32 };

A utility function, ConvertTexel(), converts a texel in memory in a given pixel

format to either a Float or a Spectrum. (One channel formats are replicated across

channels if the target is a Spectrum, and RGB formats are averaged across their

three channels if the target is a Float.)

〈Image Function Declarations〉 ≡
template <typename T> T ConvertTexel(const void *texel, PixelFormat format);

1.2.2 MIP MAP AND TEXTURE INTERFACES

We have updated pbrt’s texture filtering defaults: now, bilinear filtering of four

texels from the more detailed of the nearest MIP levels for the point being

shaded’s filter footprint is the default, while before EWA filtering was the default.

A new parameter to ImageTexture, “filter”, can be used to control which filtering

algorithm to use: valid options are “point”, “bilinear”, “trilinear”, and “EWA”.

For path tracing, where many samples per pixel are usually taken, the expense

of higher-quality texture filtering algorithms like EWA isn’t worthwhile; it’s just



SECTION 1.2 MOD IF ICAT IONS ELSEWHERE IN PBRT 5

as well to include texture filtering as part of the rest of the integration for pixels’

values.

To support texture caching, we have modified pbrt’s MIPMap implementation to

operate in terms of an abstract TexelProvider class, which provides an interface

that abstracts away how the texels used by the MIPMap are stored and represented.

Thus, the MIPMap no longer stores the image pyramid directly, but relies on a

TexelProvider instead. The TexelProvider declaration and implementations are

in the files core/mipmap.h and core/mipmap.cpp.

〈TexelProvider Declarations〉 ≡
class TexelProvider {

public:

〈TexelProvider Public Methods〉
};

The MIPMap can query how many levels are present in the image pyramid and

what the resolution of each level is.

〈TexelProvider Public Methods〉 ≡
virtual int Levels() const = 0;

virtual Point2i LevelResolution(int level) const = 0;

The MIPMap can also request the value of a texel at a given position in a given

level. Remapping out-of-bounds positions based on the image’s wrap mode is

handled by the MIPMap, so TexelProvider implementations can assume that the

given position is a valid texel coordinate.

〈TexelProvider Public Methods〉 ≡
virtual Float TexelFloat(int level, Point2i p) const = 0;

virtual Spectrum TexelSpectrum(int level, Point2i p) const = 0;

In order to continue to support preloaded textures (as is the only option for image

maps in pbrt-v3), we have written an ImageTexelProvider. It stores a vector of

Images, one for each level of the pyramid, and passes MIP map requests on to the

appropriate Image.

We have also implemented a CachedTexelProvider that provides a bridge between

the MIPMap and the texture cache described in this document. Its implementation

isn’t very interesting; it just forwards requests from the MIPMap on to the texture

cache.

1.2.3 RAY DIFFERENTIALS

Recall from Section 10.1.3 of the third edition of Physically Based Rendering

how important ray differentials are for high-quality texture filtering for directly-

visible objects and for objects seen via specular reflections. There, the use of ray

differentials was driven by an interest in anti-aliasing. Now, given the connection

between anti-aliasing and the spatial coherence that texture caching depends on,

we can see that ray differentials are also important for texture cache performance.

(Section 1.6.5 has measurements that show just how important they are.)



6 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

Ideally, pbrt’s BxDF sampling methods would allow BxDFs to return ray differentials

for sampled directions. Rather than overhaul all of those interfaces, we’ll use a

work-around for now: we’ve added a SurfaceInteraction::GenerateSpawnedRay()

method that also takes the BxDFFlags encoding the type of BxDF component that

was sampled by BSDF::Sample_f() and the surface’s index of refraction. It uses

these along with the incident ray’s differentials to compute approximate differen-

tials for the spawned ray. In turn, the PathIntegrator and VolPathIntegrator call

this method to generate spawned rays. Computing appropriate ray differentials

for bidirectional light transport algorithms remains a challenging problem; see

the “Further Reading” section for more information.

〈SurfaceInteraction Method Definitions〉 ≡
RayDifferential SurfaceInteraction::SpawnRay(const RayDifferential &rayo,

const Vector3f &wi, int bxdfType,

Float eta) const {

RayDifferential rd = SpawnRay(wi);

rd.hasDifferentials = true;

rd.rxOrigin = p + dpdx;

rd.ryOrigin = p + dpdy;

if (bxdfType & BSDF_DIFFUSE) {

〈Compute differentials for diffuse ray〉
} else {

〈Compute ray differentials for glossy and specular rays〉
}

return rd;

}

Ray differentials for indirect diffuse and glossy rays are computed in an ad-hoc

manner in the current implementation. We compute differentials for diffuse indi-

rect rays as if they covered roughly 1/25th of the hemisphere, and 1/100th of the

hemisphere for glossy. For highly glossy surfaces that are close to perfectly spec-

ular, differentials based on perfect specular reflection may be more appropriate.

(See the “Further Reading” section for more information on better approaches.)

Though our experiments haven’t been comprehensive, we have found our current

implementation to generally work well.

〈Compute differentials for diffuse ray〉 ≡
Vector3f v[2];

CoordinateSystem(wi, &v[0], &v[1]);

rd.rxDirection = Normalize(wi + .2f * v[0]);

rd.ryDirection = Normalize(wi + .2f * v[1]);

We won’t include the code for glossy rays or for specular rays here (the specular

code matches the existing code in pbrt for specular ray differentials.)



SECTION 1.3 Ti l e dIma g ePy r am i d IMPLEMENTAT ION 7

1.3 TiledImagePyramid IMPLEMENTATION

The TiledImagePyramid class takes care of the details of representing image

pyramids with fixed-size texture tiles, including converting from pyramids of

images stored in scanlines, storing tiled textures on disk, and reading tiles back.1

It provides a key foundation for the implementation of the texture cache.

〈TiledImagePyramid Declarations〉 ≡
class TiledImagePyramid {

public:

〈TiledImagePyramid Public Methods〉
〈TiledImagePyramid Public Data〉

};

Its Create() method takes an image pyramid with each level specified by an Image,

rearranges the texels into tiles with width and height equal to the given tileSize

(which must be a power of 2), and writes them to disk. Because the top levels

of image pyramids are generally very low resolution (and thus would occupy a

small part of a tile, wasting memory), up to topLevelsBytes of them are stored

separately in the file header, not arranged into tiles.

〈TiledImagePyramid Public Methods〉 ≡
static bool Create(std::vector<Image> levels, const std::string &filename,

WrapMode wrapMode, int tileSize, int topLevelsBytes = 3800);

The TiledImagePyramid::Read() method reads the metadata from the file header

(but not the texels from all of the texture tiles) and initializes the members of

the given TiledImagePyramid.

〈TiledImagePyramid Public Methods〉 ≡
static bool Read(const std::string &filename, TiledImagePyramid *tex);

Some basic information about the texture, including the in-memory format of

the texels, the base-2 logarithm of the tile size, and the resolution of each level

are stored on disk and returned in the TiledImagePyramid returned by Read().

〈TiledImagePyramid Public Data〉 ≡
std::string filename;

PixelFormat pixelFormat;

WrapMode wrapMode;

int logTileSize;

std::vector<Point2i> levelResolution;

levelOffset gives the offset into the tiled texture file where the tiles for the

corresponding level start. Within a level, tiles are laid out left-to-right, top-to-

bottom. Within a tile, texels are laid out in scanline order.

1 Because the renderer generally accesses spatially-coherent 2D regions of the texture, storing textures in tiles rather than scanlines means that

for a read of a given number of texels from disk, it’s more likely that texel accesses in the immediate future will access one of the read texels.



8 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

〈TiledImagePyramid Public Data〉 ≡
std::vector<int64_t> levelOffset;

Starting at firstInMemoryLevel, the texels for that and all subsequent levels are

stored in the file header and read from disk by Read(). inMemoryLevels stores

pointers to the texels for these levels, which are stored in scanline order.

〈TiledImagePyramid Public Data〉 ≡
int firstInMemoryLevel;

std::vector<std::unique_ptr<char[]>> inMemoryLevels;

Given a TiledImagePyramid, a few utility methods provide various values related

to the texture.

TileBytes() returns the total number of bytes needed to store all of the texels in

a single tile of the texture. The TexelBytes() utility function, not included here,

returns the number of bytes that a single texel in the given format uses (e.g., 3

for an 8-bit RGB texture).

〈TiledImagePyramid Public Methods〉 ≡
size_t TileBytes() const {

return (1 << logTileSize) * (1 << logTileSize) * TexelBytes(pixelFormat);

}

Texture tiles are stored so that each one starts at an integer multiple of

TileDiskAlignment in the tiled texture file. Aligning them in this way can make

I/O operations a bit more efficient. TileDiskBytes() therefore gives the number

of bytes that each texture tile uses on disk, accounting for this padding (which

is assumed to be a power of 2.)

〈TiledImagePyramid Public Methods〉 ≡
size_t TileDiskBytes() const {

return (TileBytes() + TileDiskAlignment - 1) & ~(TileDiskAlignment - 1);

}

〈Texture Cache Constants〉 ≡
static constexpr int TileDiskAlignment = 4096;

Given a texture coordinate p, TileIndex() returns the coordinates for the tile

that the point’s texel is in. Because tiles are square and have a power-of-2 size in

each dimension, a 2D texel coordinate can be converted to a 2D tile coordinate

by shifting off a number of low bits equal to the log of the tile size.

〈TiledImagePyramid Public Methods〉 ≡
Point2i TileIndex(Point2i p) const {

return {p[0] >> logTileSize, p[1] >> logTileSize};

}

Given a texture coordinate p, TexelOffset() gives the offset inside p’s tile where

its texel is found. Again thanks to power-of-2 sized tiles, we just need to mask

off the appropriate number of low bits to get a 2D tile coordinate and then can



SECTION 1.4 A HASH TABLE FOR TEXTURE T I LES 9

compute an offset into the tile using the fact that texels are laid out in scanline

order inside tiles.

〈TiledImagePyramid Public Methods〉 ≡
int TexelOffset(Point2i p) const {

int tileMask = (1 << logTileSize) - 1;

Point2i tilep{p[0] & tileMask, p[1] & tileMask};

int tileWidth = 1 << logTileSize;

return TexelBytes(pixelFormat) * (tilep[1] * tileWidth + tilep[0]);

}

FileOffset() returns the offset in the file where the tile with tile indices given by

p at level level starts.

〈TiledImagePyramid Public Methods〉 ≡
int64_t FileOffset(int level, Point2i p) const {

int tileWidth = 1 << logTileSize;

int xTiles = (levelResolution[level][0] + tileWidth - 1) >> logTileSize;

return levelOffset[level] + TileDiskBytes() * (p[1] * xTiles + p[0]);

}

If the texel for the given coordinates is available from the top few pyramid levels

that are stored in the file’s header and were loaded by the Read() method, the

GetTexel() method returns a pointer to it; otherwise it returns nullptr. These

levels are stored in scanline order, so the indexing is straightforward given a

pointer to the first texel in a level.

〈TiledImagePyramid Public Methods〉 ≡
const char *GetTexel(int level, Point2i p) const {

if (level < firstInMemoryLevel) return nullptr;

const char *levelStart = inMemoryLevels[level - firstInMemoryLevel].get();

return levelStart +

TexelBytes(pixelFormat) * (p[1] * levelResolution[level][0] + p[0]);

}

1.4 A HASH TABLE FOR TEXTURE TILES

Our texture cache stores texture tiles in a hash table that is implemented in the

TileHashTable class. The hash table is specifically designed to allow concurrent

lookups and insertions without requiring mutual exclusion between threads; this

is important for good parallel scalability. In this section, we will describe the

implementation of those two operations; we’ll defer discussion of how tiles are

removed from the hash table to Section 1.5.5, which describes the complete tile

freeing algorithm.



10 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

〈TileHashTable Declarations〉 ≡
class TileHashTable {

public:

〈TileHashTable Public Methods〉
private:

〈TileHashTable Private Data〉
};

The hash table is a fixed size (and thus should be a bit larger than the number

of tiles to be stored in it). For our application, where a fixed amount of memory

is allocated for texture tiles and thus the maximum number of tiles is known

at startup time, the lack of ability to grow or shrink the hash table isn’t a

limitation. The “Further Reading” section has pointers to papers about hash

table implementations that can grow and shrink even with many threads accessing

them concurrently.

〈TileHashTable Method Definitions〉 ≡
TileHashTable::TileHashTable(size_t size) : size(size) {

table.reset(new std::atomic<TextureTile *>[size]);

for (size_t i = 0; i < size; ++i)

table[i] = nullptr;

}

Note that hash table elements are atomic pointers to texture tiles, not regular

pointers. We’ll see why this is necessary shortly, in the implementation of the the

lookup and insertion methods.

〈TileHashTable Private Data〉 ≡
std::unique_ptr<std::atomic<TextureTile *>[]> table;

const size_t size;

The TextureTile class represents a single in-memory texture tile. Its primary

member variables are a TileId that describes which texture, pyramid level, and

tile the TextureTile represents and a pointer to a fixed amount of memory to

store texels for the tile that is provided to the TextureTile by the texture cache

at startup time.

〈TextureTile Declarations〉 ≡
struct TextureTile {

〈TextureTile Public Methods〉
〈TextureTile Public Data〉

};

〈TextureTile Public Data〉 ≡
TileId tileId;

char *texels = nullptr;

TileId packs an integer identifier representing an image pyramid, an integer for

the level of the pyramid, and tile coordinates within the level into a single 64-

bit member variable, bits. Doing so (versus storing them individually) makes

hashing and comparisons slightly more efficient in the following.



SECTION 1.4 A HASH TABLE FOR TEXTURE T I LES 11

〈TileId Declarations〉 ≡
struct TileId {

〈TileId Public Methods〉
private:

uint64_t bits;

};

The TileId constructor packs the tile coordinates into bits. It also includes a few

runtime assertions (not included here) that ensure that the given values won’t

overflow the 16-bit quantities that they’ve each been allotted. A default construc-

tor stores an invalid value, which gives us a TileId to identify TextureTiles that

do not refer to valid texture data.

〈TileId Public Methods〉 ≡
TileId() : TileId(0, -1, {0, 0}) {}

TileId(int texId32, int level32, Point2i p32) {

bits = texId32;

bits |= (uint64_t(level32) & 0xffff) << 16;

bits |= uint64_t(p32[0]) << 32;

bits |= uint64_t(p32[1]) << 48;

}

A few straightforward methods unpack elements from bits and return the original

texture id, pyramid level, and tile coordinates.

〈TileId Public Methods〉 ≡
int texId() const { return bits & 0xffff; }

int level() const { return (bits >> 16) & 0xffff; }

Point2i p() const { return Point2i((bits >> 32) & 0xffff,

(bits >> 48) & 0xffff); }

The hash() method computes a the value of a hash function based on the TileId.

An expedient approach would be to used the packed bits directly as a hash

value, though results from this would be poor: as a general principle, a good

hash function should end up flipping each of the bits in the computed hash with

probability 50% if a single bit in the input value changes—clearly not the case

for that hash function.

Therefore, we apply the following MixBits() function to the packed id to compute

a better hash value. It’s based on a bit mixer function derived by Stafford

(2011); through a few shifts, XORs, and multiplies, it computes a hash value

that generally has much higher entropy than its input. The various constants

in its implementation were derived by searching a parameter space, applying

the resulting function to a variety of low-entropy inputs (e.g. sequences of small

integers), and looking for values that maximized the overall entropy in the result.

〈TileId Public Methods〉 ≡
size_t hash() const { return MixBits(bits); }



12 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

〈Texture Cache Utility Functions〉 ≡
inline uint64_t MixBits(uint64_t v) {

v ^= (v >> 31);

v *= 0x7fb5d329728ea185;

v ^= (v >> 27);

v *= 0x81dadef4bc2dd44d;

v ^= (v >> 33);

return v;

}

TileId also provides comparison operations and an operator<< for printing to a

C++ output stream; the implementations of these methods are straightforward

and not included here.

1.4.1 MEMORY MODELS AND LOCK-FREE SYNCHRONIZATION

For scalability with many threads, it’s important that threads be able to perform

lookups and insert tiles into the hash table without mutual exclusion and with

minimal inter-core communication—if the hash table was protected by a single

mutex, for example, performance would be poor, both due to threads being held

up by the mutex when another thread was accessing the hash table, as well as due

to frequent communication between CPU cores when the mutex was stored in a

different core’s cache than the one acquiring it. (Recall the discussion of “read

for ownership” on p. 1083 of the third edition of Physically Based Rendering .)

In order to eliminate any scalability issues due to mutual exclusion, we have

implemented hash table lookups and insertion as lock-free algorithms that allow

multiple threads to perform these operations concurrently without having mu-

texes or other constructs that prevent threads from accessing the data structure.

In particular, insertion is carefully implemented so that other threads concur-

rently doing lookups always encounter a valid hash table with valid texture tiles.

Before going into the implementations of those operations, we’ll review some

preliminaries.

When thinking about lock-free algorithms, it’s important to know that both

compilers and CPUs may reorder memory accesses—both reads and writes—

from the order in which they appear in program source code. In a single-threaded

program, these reorderings are required to be undetectable by the program—the

compiler and hardware must not change the semantics of the program.

With multi-threaded execution, providing the same guarantee for the entire pro-

gram isn’t feasible. Synchronization mechanisms like std::mutex prevent memory

operations from being moved from one side of the mutex to the other; for multi-

threaded programs that use mutexes, this usually suffices such that programmers

don’t need to be aware of memory operation reordering at all. If no explicit thread

synchronization is used (as with lock-free algorithms), it’s necessary to use the

programming language’s memory model and mechanisms that the language pro-

vides for guaranteeing memory ordering in specific instances so that when data



SECTION 1.4 A HASH TABLE FOR TEXTURE T I LES 13

is shared between threads, the programmer can ensure that undesired orderings

of memory operations don’t cause bugs.

For the tile hash table, our needs are easily stated. First, when a TextureTile *

is added to the hash table, all of the memory writes that initialized the members

of the TextureTile must be in memory and visible to any other thread that can

read that tile’s pointer from the hash table. Second, any thread that reads a tile

from the hash table must not read from any of the tile’s members before loading

its pointer.2

The C++11 memory model provides semantics that allow us to specify these

requirements. The std::atomic class has load() and store() methods that also

take a value that indicates a memory ordering to associate with the operation.

For a load, std::memory_order_acquire ensures that all memory operations after

the load in the program are in fact ordered (by both compiler and hardware)

after the load. With a store, std::memory_order_release ensures that all memory

operations in the program before the store are ordered to be before it.

As an example of the use of memory ordering semantics to ensure a reasonable

program execution, consider these two variables:

int val = 0;

std::atomic<bool> updated{false};

Now, assume that one thread updates them as follows:

val = 1;

updated.store(true, std::memory_acquire_release);

A second thread waits for updated to become true and then reads val, as follows.

while (!updated.load(std::memory_order_acquire))

; // spin

assert(val == 1);

Because the first thread used release semantics when writing to updated, we can

be sure that the write to val will definitely be visible to the second thread after

it sees that updated is true. Further, because acquire semantics are used for the

read of updated in the second thread, there’s no danger of the compiler moving

the read of val before the read of updated, which otherwise might seem to the

compiler to be an innocuous transformation.

Because the two threads in this example had this interaction through the updated

variable, we say that they have a synchronizes-with relationship. These forms of

interactions are extremely lightweight—on x86 CPUs, no special instructions are

emitted by the compiler for loads and stores with these ordering semantics; the

memory semantics only serve the inform the compiler to not reorder memory

2 This second requirement seems like it would obviously always be the case, but some CPU architectures perform load prediction , where

execution may proceed speculatively with a predicted value from a load, where the load’s actualy value is only checked later. Compilers may

generate code that uses value speculation , which may also reorder loads in this way.



14 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

accesses itself across them. (Other architectures do need additional instructions,

though they remain reasonably lightweight.)

For accesses to std::atomic variables where there are no associated memory

ordering requirements, the std::memory_order_relaxed semantic can be used.

1.4.2 HASH TABLE LOOKUPS

Onward to the Lookup() method. Most of the hash table lookup code is fairly

standard, though note the explicit use of acquire semantics for the load from the

TileHashTable::table array. Assuming the use of release semantics for writes to

that array when tile pointers are added to it, Lookup() can access the member

variables of entry without having to worry if the writes to initialize them were

reordered after the write of entry into the hash table and thus possibly not yet

visible to the thread running Lookup().

〈TileHashTable Method Definitions〉 ≡
const char *TileHashTable::Lookup(TileId tileId) const {

int hashOffset = tileId.hash() % size;

int step = 1;

for (;;) {

const TextureTile *entry =

table[hashOffset].load(std::memory_order_acquire);

〈Process entry for hash table lookup〉
}

}

If entry is nullptr, then the tile isn’t in the hash table and Lookup() can return.

If there is an entry and the TileIds match, then we have a hit; after some

bookkeeping related to freeing tiles that will be explained in Section 1.5.5, the

pointer to the tile’s texels can be returned. Otherwise, the next offset to try in

the hash table is computed using quadratic probing.

〈Process entry for hash table lookup〉 ≡
if (entry == nullptr)

return nullptr;

else if (entry->tileId == tileId) {

〈Update entry’s marked field after cache hit〉
return entry->texels;

} else {

hashOffset += step * step;

++step;

if (hashOffset >= size) hashOffset %= size;

}

1.4.3 HASH TABLE INSERTION

TileHashTable::Insert() adds a texture tile to the hash table. Like Lookup(), it is

implemented in a lock-free manner, so that it’s both safe for other threads to be



SECTION 1.4 A HASH TABLE FOR TEXTURE T I LES 15

adding other entries to the hash table as well as for other threads to be looking

up tiles in the hash table concurrently.

The general approach is to first compute a candidate position in the hash table

(stored in hashOffset) and then to attempt to store the given tile at that offset.

If the entry at that offset is in use, then (as with lookups), quadratic probing is

used to find the next candidate position until a free one is found. In practice, the

first entry tried is usually free.

〈TileHashTable Method Definitions〉 ≡
void TileHashTable::Insert(TextureTile *tile) {

int hashOffset = tile->tileId.hash() % size;

int step = 1;

for (;;) {

〈Attempt to insert tile at hashOffset〉
}

}

The key to the lock-free implementation is the use of the atomic compare_

exchange_weak() method to store the tile’s pointer in the hash table. It takes

an expected value in cur and a value to replace it with, tile. If the memory

location at table[hashOffset] has the value stored in cur, then tile is stored there

atomically and true is returned. Otherwise, false is returned and cur stores the

current value at table[hashOffset]. Thus, the insertion attempt fails if another

tile is already stored in that location. If two threads try to store a tile in the same

hashOffset at the same time, only one will succeed.

〈Attempt to insert tile at hashOffset〉 ≡
TextureTile *cur = nullptr;

if (table[hashOffset].compare_exchange_weak(cur, tile,

std::memory_order_release))

return;

〈Handle compare–exchange failure for hash table insertion〉

There are two cases that may cause the compare–exchange to fail: as already

mentioned, the current entry in the hash table may already have a different tile

and thus not have the value nullptr. Another possibility is a spurious failure;

compare_exchange_weak() is allowed to return false even if the first value passed

to it matches the current value at that location.3 In the first case, we update the

hashOffset using quadratic probing and in the second, we try the exchange again

at the same hashOffset.

3 There is a compare_exchange_strong() variant that will not fail spuriously, but it is much more expensive on some architectures, so the

weak variant is generally preferable.



16 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

〈Handle compare–exchange failure for hash table insertion〉 ≡
if (cur != nullptr) {

hashOffset += step * step;

++step;

if (hashOffset >= size) hashOffset %= size;

}

1.5 TextureCache IMPLEMENTATION

We can now dig into the TextureCache implementation; it allocates a fixed number

of TextureTiles at startup and uses the TileHashTable to maintain a cache

of them. Tiles are read from disk on demand based on the texels needed for

rendering.

〈TextureCache Declarations〉 ≡
class TextureCache {

public:

〈TextureCache Public Methods〉
private:

〈TextureCache Private Methods〉
〈TextureCache Private Data〉

};

We’ll describe the part of the TextureCache constructor’s implementation related

to allocating memory for texture tiles now. Definitions of the last two fragments

in the constructor will come later, closer to the code that they are related to.

〈TextureCache Method Definitions〉 ≡
TextureCache::TextureCache() {

〈Allocate texture tiles and initialize free list〉
〈Allocate hash tables for texture tiles〉
〈Initialize markFreeCapacity〉
〈Allocate threadActiveFlags〉

}

The number of texture tiles that can be resident in memory is easily computed

given the total allowed texture cache size.

〈Allocate texture tiles and initialize free list〉 ≡
size_t maxTextureBytes = size_t(PbrtOptions.texCacheMB) * 1024 * 1024;

size_t nTiles = maxTextureBytes / TileAllocSize;

〈Allocate tile memory for texture cache〉
〈Allocate TextureTiles and initialize free list〉

A fixed amount of memory is allocated for all texture tiles, just enough to

store 64× 64 texels for the common 3-channel RGB, 8-bit texture format. Other

formats use the largest power-of-two size that keeps them under the tile allocation

size. (Exercise 1.1 at the end of this document discusses an alternative approach

that uses memory more efficiently.)



SECTION 1.5 Te x t u r eCa c h e IMPLEMENTAT ION 17

〈TextureCache Private Data〉 ≡
static constexpr int TileAllocSize = 3 * 64 * 64;

Memory for all of the texels in all of the tiles is allocated in a single large

allocation. Doing so is slightly more efficient in time (though that doesn’t matter

much since this is only done at startup time), and is likely to save a bit of memory,

since the memory allocator doesn’t need to store bookkeeping information for

each tile’s allocation.

〈Allocate tile memory for texture cache〉 ≡
tileMemAlloc.reset(new char[nTiles * TileAllocSize]);

char *tilePtr = tileMemAlloc.get();

〈TextureCache Private Data〉 ≡
std::unique_ptr<char[]> tileMemAlloc;

Now the TextureTiles are allocated and pointers offset throughout tileMemAlloc

are used to initialize their texels pointers. The TextureCache::freeTiles member

variable is used to store pointers to free tiles (initially, all of them).

〈Allocate TextureTiles and initialize free list〉 ≡
allTilesAlloc.reset(new TextureTile[nTiles]);

for (int i = 0; i < nTiles; ++i) {

allTilesAlloc[i].texels = tilePtr + i * TileAllocSize;

freeTiles.push_back(&allTilesAlloc[i]);

}

Other TextureCache methods that access freeTiles must hold freeTilesMutex

when they do so. (There’s no need in the constructor, however.)

〈TextureCache Private Data〉 ≡
std::unique_ptr<TextureTile[]> allTilesAlloc;

std::mutex freeTilesMutex;

std::vector<TextureTile *> freeTiles;

Not one, but two hash tables are allocated. The second one will be used when

it’s time to remove not-recently-used tiles from the cache and add them to the

free list; we can ignore it until we discuss that part of the implementation.

〈Allocate hash tables for texture tiles〉 ≡
int hashSize = 8 * nTiles;

hashTable = new TileHashTable(hashSize);

freeHashTable = new TileHashTable(hashSize);

〈TextureCache Private Data〉 ≡
std::atomic<TileHashTable *> hashTable;

TileHashTable *freeHashTable;

The AddTexture() method allows callers to inform the texture cache of a texture

for it to manage. It returns an integer id that identifies the texture, which should

be passed back for the texId parameter of the Texel() method below to identify

the texture. An error is indicated by a negative id return value.



18 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

Note that it’s not safe to call this method concurrently while other threads are

calling other TextureCache methods or for multiple threads to call it at the same

time. Neither of these are problems in practice, as this method is only called

during the (mostly) serial scene parsing and construction phase.

〈TextureCache Method Definitions〉 ≡
int TextureCache::AddTexture(const std::string &filename) {

〈Return preexisting id if texture has already been added〉
TiledImagePyramid tex;

if (!TiledImagePyramid::Read(filename, &tex)) return -1;

textures.push_back(std::move(tex));

return textures.size() - 1;

}

The returned id is actually an index into the textures vector, which holds the

metadata for each texture managed by the cache.

〈TextureCache Private Data〉 ≡
std::vector<TiledImagePyramid> textures;

〈Return preexisting id if texture has already been added〉 ≡
auto iter = std::find_if(textures.begin(), textures.end(),

[&filename](const TiledImagePyramid &tex) {

return tex.filename == filename;

});

if (iter != textures.end()) return iter - textures.begin();

1.5.1 PARALLELISM STRATEGY

Before getting into the heart of the implementation of the texture cache—the

Texel() and GetTile() methods—we’ll describe the overall approach that allows

threads that only need to lookup tiles to do so efficiently even in the presence of

other threads adding new tiles or removing old ones. Going into this topic now

will make it easier to understand some of the details of those methods.

The salient characteristics of the workload are the reading texels from tiles that

are already in memory is much more frequent than loading tiles from disk and

adding them to the hash table, which in turn is much more frequent than recycling

not-recently-used tiles. (For example, in the performance measurements described

in Section 1.6, typical ratios were that texel lookups were ∼3000× more frequent

than adding tiles to the cache, which in turn was ∼8000× more frequent than

recycling old tiles—thus, ∼24M texel lookups for each freeing operation.)

The “read-copy update” (RCU) technique provides an approach that can give

good parallel scalability with workloads like these. Its key benefit is that it

ensures that threads that are reading the data structure are never prevented

from accessing it, even when it is being modified.



SECTION 1.5 Te x t u r eCa c h e IMPLEMENTAT ION 19

First, a few definitions: all reads of RCU-managed data are done with the reading

thread inside a read-side critical section.4 In turn, when not in a read-side critical

section, a thread is in a quiescent state and must not access any RCU-managed

data. A period of time where each thread has been in a quiescent state at least

once is a grace period .

Given these definitions, there are two main ideas that underlie RCU.

•Modifications to a RCU-managed data structure must be done in a way

such that the data structure is always in a consistent state and such that

threads traversing it while it’s being modified always see a valid data

structure. (The compare-and-swap and memory ordering semantics used in

TileHashTable::Insert() take care of this for inserting tiles; we will see how

this is done for tile removal in a few pages.)
• If items are removed from the data structure, then the memory for the items

can only be freed or reused after a grace period has passed; only then can

we be sure that no thread is still accessing those entries.

There are many ways to detect the passage of a grace period. Our implementation

is based on per-thread flags that indicate whether each thread is currently inside

a read-side critical section. Each thread sets its flag to true before accessing RCU-

managed data—the hash table, TextureTiles, and texels in those tiles—and only

resets it to false when it is done.

A flag is allocated for each thread in the TextureCache constructor.

〈Allocate threadActiveFlags〉 ≡
threadActiveFlags = std::vector<ActiveFlag>(MaxThreadIndex());

〈TextureCache Private Data〉 ≡
std::vector<ActiveFlag> threadActiveFlags;

An atomic bool is all we need for each flag, but it’s critical that each thread’s flag

be stored in a separate cache line; this is taken care of by the following alignas

specifier. Without it, rendering was 5% slower on our test system due to false

sharing and the resulting unnecessary cache coherence protocol overhead.

〈ActiveFlag Declarations〉 ≡
struct alignas(PBRT_L1_CACHE_LINE_SIZE) ActiveFlag {

std::atomic<bool> flag{false};

};

When a thread enters a read-side critical section, it calls RCUBegin(), which sets

its active flag to true. This is in general a highly efficient operation—normally,

the thread’s flag will be in its own CPU’s cache and no other thread will have

read from it, so no expensive CPU cache coherence operations are expected.

4 Being inside a read-side critical section doesn’t require inter-thread communication or expensive synchronization mechanisms; for the moment,

just think of it in terms of somehow delineated period of time for each thread when it’s accessing shared data.



20 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

〈TextureCache Private Methods〉 ≡
void RCUBegin() {

std::atomic<bool> &flag = threadActiveFlags[ThreadIndex].flag;

flag.store(true, std::memory_order_acquire);

}

Upon exiting a read-side critical section, a thread should call RCUEnd(), which

clears its flag. Note the memory ordering specifiers associated with these two

operations, which ensure that no accesses of RCU-managed data are moved

outside of the read-side critical section.

〈TextureCache Private Methods〉 ≡
void RCUEnd() {

std::atomic<bool> &flag = threadActiveFlags[ThreadIndex].flag;

flag.store(false, std::memory_order_release);

}

The WaitForQuiescent() method allows one thread to wait for another to enter a

quiescent state. If the other thread isn’t in a read-side critical section when the

first one checks, the first will immediately see that the flag is false; otherwise it

spins until the other thread finishes its read-side critical section. In any case, the

other thread isn’t inhibited from executing. After a thread calls this method for

all of the other threads, it has ensured that a grace period has passed (as long as

it isn’t itself in a read-side critical section).

〈TextureCache Private Methods〉 ≡
void WaitForQuiescent(int thread) {

std::atomic<bool> &flag = threadActiveFlags[thread].flag;

while (flag.load(std::memory_order_acquire) == true)

; // spin

}

1.5.2 TEXEL LOOKUPS

With the RCU basics established, we can proceed to texel lookups, where the

ideas are put into use. The Texel() method returns a single texel value from the

given texture level. All texture cache management happens as a result of calls to

this method. Note that Texel() is a template method; callers can use it to get

both Float and Spectrum texel values, independent of the texture’s underlying

format.

〈TextureCache Method Definitions〉 ≡
template <typename T>

T TextureCache::Texel(int texId, int level, Point2i p) {

const TiledImagePyramid &tex = textures[texId];

〈Return texel from preloaded levels, if applicable〉
〈Get texel pointer from cache and return value〉

}



SECTION 1.5 Te x t u r eCa c h e IMPLEMENTAT ION 21

Texel() starts by checking to see if the requested texel is one of the ones already

in memory because it’s in one of the very low resolution levels at the top of the

pyramid. If so, we can avoid anything related to the cached tiles entirely.

〈Return texel from preloaded levels, if applicable〉 ≡
const char *texel = tex.GetTexel(level, p);

if (texel != nullptr) return ConvertTexel<T>(texel, tex.pixelFormat);

Otherwise, a call to GetTile() gives a pointer to the start of the texture tile

that holds the texel for the coordinate p, loading the tile from disk if necessary.

TiledImagePyramid methods give us the tile coordinates for p as well as its offset

within the tile.

Because the pointer to the texels is RCU-managed data, GetTile() marks the

start of a read-side critical section by calling RCUBegin() before accessing the

hash table, leaving it active when returning the pointer. In turn, here we must

not mark the critical section’s end until after ConvertTexel() has converted the

texel data to the value that Texel() will return.

〈Get texel pointer from cache and return value〉 ≡
TileId tileId(texId, level, tex.TileIndex(p));

texel = GetTile(tileId) + tex.TexelOffset(p);

T ret = ConvertTexel<T>(texel, tex.pixelFormat);

RCUEnd();

return ret;

GetTile() returns a pointer to the start of the texels for the given texture tile.

〈TextureCache Method Definitions〉 ≡
const char *TextureCache::GetTile(TileId tileId) {

〈Return tile if it’s present in the hash table〉
〈Check to see if another thread is already loading this tile〉
〈Load texture tile from disk〉
〈Add tile to hash table and return texel pointer 〉

}

The read-side critical section must start before the hash table is accessed at

all, including loading the hashTable pointer. If the call to Lookup() is successful,

the method returns without ending the read-side critical section. Otherwise, the

critical section ends—this thread won’t be accessing the hash table again for a

while (and indeed, may end up performing disk I/O, which may take quite some

time), and it’s important that the reported time in read-side critical sections be

as short as possible so that any other threads that may be waiting for a quiescent

state don’t wait any longer than necessary.

〈Return tile if it’s present in the hash table〉 ≡
RCUBegin();

TileHashTable *t = hashTable.load(std::memory_order_acquire);

if (const char *texels = t->Lookup(tileId))

return texels;

RCUEnd();



22 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

1.5.3 READING TILES FROM DISK

If the tile isn’t in the cache, then it must be read from disk. However, if another

thread has already started an I/O operation to load it, it does no good for the

current thread to issue a redundant I/O operation. (Indeed, doing so is likely to

delay I/O for other tiles, reducing overall performance.) Therefore, the texture

cache tracks which tiles are currently being read from disk so that other threads

that want the same tile can just wait for the thread already loading it to add it

to the hash table.

This bookkeeping is handled by a vector that stores the TileIds for tiles currently

being read; access to the vector is controlled with a mutex. (There’s no need to

worry about a more scalable approach since tile cache misses are so much less

frequent than hits. Further, this mutex is never held by any thread for very long.)

〈Check to see if another thread is already loading this tile〉 ≡
outstandingReadsMutex.lock();

for (const TileId &readTileId : outstandingReads) {

if (readTileId == tileId) {

〈Wait for tileId to be read before retrying lookup〉
}

}

〈Record that the current thread will read tileId〉
〈TextureCache Private Data〉 ≡

std::mutex outstandingReadsMutex;

std::vector<TileId> outstandingReads;

If the tile is already being read from disk, the current thread waits on a condition

variable, outstandingReadsCondition. Doing so requires slightly messy code, since

a std::unique_lock must be passed to the condition variable’s wait() method and

we locked the mutex directly above. After the wait() call, the thread is suspended

until another thread signals the condition variable.

After the thread is awakened, a recursive call to GetTile() tries to find the tile

in the hash table. This lookup may not be successful, for example if tiles were

freed from the hash table after the read finished but before this thread got a

chance to call Lookup() again. (This case is unlikely, however, since the tile was

presumably added very recently by another thread and thus shouldn’t be chosen

to be recycled when there are no more available tiles.) In any case, the regular

lookup mechanisms just try again until the tile is found.

〈Wait for tileId to be read before retrying lookup〉 ≡
std::unique_lock<std::mutex> readsLock(outstandingReadsMutex,

std::adopt_lock);

outstandingReadsCondition.wait(readsLock);

readsLock.unlock();

return GetTile(tileId);

〈TextureCache Private Data〉 ≡
std::condition_variable outstandingReadsCondition;



SECTION 1.5 Te x t u r eCa c h e IMPLEMENTAT ION 23

If the current thread is the one to read the tile, it records this fact and releases

the mutex protecting outstandingReads so that other threads can access it while

it is reading texels from disk.

〈Record that the current thread will read tileId〉 ≡
outstandingReads.push_back(tileId);

outstandingReadsMutex.unlock();

We can now load the tile’s texels from disk. The GetFreeTile() method returns

an available tile, freeing tiles if needed, and ReadTile() reads the specified tile

from disk.

〈Load texture tile from disk〉 ≡
TextureTile *tile = GetFreeTile();

ReadTile(tileId, tile);

If there are no free tiles, FreeTiles() frees some of the entries in the hash table. Its

implementation is the subject of the next section, 1.5.5. (The 〈Mark hash table

entries if free-tile availability is low〉 fragment is discussed there as well.) For

now we can proceed knowing that one way or another, entries will be available in

freeTiles for the execution of the code fragment that concludes GetFreeTile().

〈TextureCache Method Definitions〉 ≡
TextureTile *TextureCache::GetFreeTile() {

std::lock_guard<std::mutex> lock(freeTilesMutex);

if (freeTiles.size() == 0)

FreeTiles();

〈Mark hash table entries if free-tile availability is low〉
〈Return tile from freeTiles〉

}

Given at least one entry in freeTiles, our task is straightforward; a tile is

removed from the free list and reset using the TextureTile::Clear() method,

not included here; it resets the tile’s tileId field to the “invalid” value and clears

some bookkeeping data used for freeing tiles.

〈Return tile from freeTiles〉 ≡
TextureTile *tile = freeTiles.back();

freeTiles.pop_back();

tile->Clear();

return tile;

ReadTile() reads the texels for the tile identified by tileId into the texels buffer

of the provided TextureTile.



24 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

〈TextureCache Method Definitions〉 ≡
void TextureCache::ReadTile(TileId tileId, TextureTile *tile) {

tile->tileId = tileId;

const TiledImagePyramid &tex = textures[tileId.texId()];

〈Get file descriptor and seek to start of texture tile〉
〈Read texel data and return file descriptor〉

}

The TiledImagePyramid lets us know where in the file this tile’s texels start; we

seek to that offset using a file descriptor for the texture’s file provided by the

FdCache. FdCache maintains a cache of open file descriptors; it will be described

momentarily.

〈Get file descriptor and seek to start of texture tile〉 ≡
int64_t offset = tex.FileOffset(tileId.level(), tileId.p());

FdEntry *fdEntry = fdCache.Lookup(tileId.texId(), tex.filename);

if (lseek(fdEntry->fd, offset, SEEK_SET) == -1)

Error("%s: seek error %s", tex.filename.c_str(), strerror(errno));

〈TextureCache Private Data〉 ≡
FdCache fdCache;

After the seek, a call to the read() sysem call reads the texels from disk.

〈Read texel data and return file descriptor〉 ≡
int tileBytes = tex.TileBytes();

if (read(fdEntry->fd, tile->texels, tileBytes) != tileBytes)

Error("%s: read error %s", tex.filename.c_str(), strerror(errno));

fdCache.Return(fdEntry);

File Descriptor Management
Opening and closing files can be somewhat expensive; given that we will generally

want to read multiple tiles from each texture, it’s worthwhile to leave files open

between reads. However, most operating systems impose a limit on the number

of open files; this limit may be insufficient for the number of textures in a scene

(especially since multiple threads may want to load tiles from the same texture

concurrently), so it’s important to be able to limit the number of open files

for texture lookups. The FdCache class takes care of keeping a fixed-size cache

of open file descriptors, providing them when needed for texture lookups, and

closing not-recently-used ones once too many are open.

Because tile reads are relatively rare (thousands of times less frequent than texel

lookups), the FdCache implementation can be reasonably straightforward without

a lot of attention to parallel scalability; a single mutex protects updates to the

hash table it uses to store file descriptors.

The Lookup() method returns a FdEntry * for the given file. The file is specified

by a unique identifier (fileId, which here corresponds to the texture id returned

by TextureCache::AddTexture()) and its filename. Hash table lookups are done

using just the identifier; the filename is only used when the file must be opened.



SECTION 1.5 Te x t u r eCa c h e IMPLEMENTAT ION 25

After its use for a read operation, the file descriptor should be returned to the

cache via the Return() method.

〈FdCache Public Methods〉 ≡
FdEntry *Lookup(int id, const std::string &filename);

void Return(FdEntry *entry);

The FdCache uses the FdEntry structure to represent file descriptors. Callers can

access the file descriptor (as would be returned by the open() system call) in the

fd field.

〈FdEntry Declarations〉 ≡
class FdEntry {

public:

int fd = -1;

private:

〈FdEntry Private Data〉
};

1.5.4 ADDING A TILE TO THE TEXTURE CACHE

Now the tile can be added to the cache. Before accessing the hash table to add the

tile after it is in memory, another read-side critical section must be started. Note

that a fresh load from hashTable is performed to get the hash table pointer—we

must not use the pointer loaded earlier in GetTile(), since the read-side critical

section where that pointer was loaded has ended. (The importance of this detail

will become clear after we present the tile freeing algorithm.)

〈Add tile to hash table and return texel pointer〉 ≡
RCUBegin();

t = hashTable.load(std::memory_order_relaxed);

t->Insert(tile);

〈Update outstandingReads for read tile〉
return tile->texels;

Once the tile has been added to the hash table, we can remove the corresponding

entry from outstandingReads and wake up any threads waiting on the condition

variable. Because there is only a single condition variable rather than one for

each outstanding tile read, any threads waiting for a different tile will be woken

nonetheless. This is somewhat unfortunate, though such threads will just attempt

to find the tile in the hash table again, not find it, check outstandingReads, find

that the read they had been waiting on is still outstanding, and wait on the

condition variable again.



26 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

〈Update outstandingReads for read tile〉 ≡
outstandingReadsMutex.lock();

for (auto iter = outstandingReads.begin(); iter != outstandingReads.end();

++iter) {

if (*iter == tileId) {

outstandingReads.erase(iter);

break;

}

}

outstandingReadsMutex.unlock();

outstandingReadsCondition.notify_all();

The very astute reader may have noticed that with the implementation we have

described it’s actually possible that two threads may add the same tile to the hash

table: if one thread adds a tile to the hash table immediately after another finishes

a failed lookup for the tile but before trying to acquire outstandingReadsMutex,

then the second thread will not find the tile in outstandingReads and will proceed

to add it itself. While this could be fixed by checking the hash table again with

the mutex held, when we instrumented the implementation to check for this case,

we never found an instance where it happened. Should it, the cost is only a tile’s

worth of unnecessary I/O and a single TextureTile, so we left the implementation

as it stands.

1.5.5 FREEING TILES

In the implementation so far, we have enjoyed the benefits of RCU: both hash

table lookups and insertion could proceed uninhibited, without any awareness of

the fact that tiles are periodically recycled. Now comes the tricky part: we need

to implement an algorithm that frees not-recently-used tiles once the tile free list

is empty, and we need to do so in a way such that other threads always encounter

a valid hash table during this process.

The approach we’ll follow is to first construct a new private hash table that only

stores the tiles we’d like to keep in the cache. Other threads can continue to use

the old hash table as normal while the new hash table is being initialized. Once

the new hash table is ready, it’s atomically swapped with the old one. After this

point, any thread that starts accessing the tile hash table will see the new one

and will be unable to access tiles in the old one, including those that are to be

freed.

However, at that point we can’t yet start adding freed tiles to the free list: even

after the swap, other threads may still be accessing the old hash table or texels

in tiles it stores. Therefore, the next step is to wait for an RCU grace period to

pass. Only then can we be sure that entries in the old hash table that weren’t

copied aren’t being accessed by other threads and thus can be added to the free

list.



SECTION 1.5 Te x t u r eCa c h e IMPLEMENTAT ION 27

Choosing Tiles to Free
In order to determine which tiles to free, our implementation marks tiles as

the hash table gets full, clears those marks when tiles are accessed, and then

later frees the tiles that are still marked. This approach works reasonably well

to find tiles that haven’t been accessed recently, with low runtime overhead.

The 〈Mark hash table entries if free-tile availability is low〉 fragment from

the TextureCache::GetFreeTile() method takes care of marking tiles; once the

number of free tiles reaches a low watermark, all current hash table entries are

marked.5

〈Mark hash table entries if free-tile availability is low〉 ≡
if (freeTiles.size() == markFreeCapacity)

hashTable.load(std::memory_order_acquire)->MarkEntries();

The TextureCache constructor initializes a member variable, markFreeCapacity,

that gives the point at which active tiles should be marked.

〈Initialize markFreeCapacity〉 ≡
markFreeCapacity = 1 + nTiles / 8;

〈TextureCache Private Data〉 ≡
int markFreeCapacity;

The MarkEntries() method goes through the hash table and sets each tile’s marked

field to true. Note that this is safe to do while other threads are concurrently

looking up or adding entries to the hash table; marking an entry just involves an

atomic store to a TextureTile member variable. If a new entry is added earlier

in the table than the current loop index i, it will just be left unmarked. This is

fine, since as a recent addition, we probably don’t want to free it soon anyway.

(Similarly for tiles added to the hash table after MarkEntries() returns.)

The store to marked doesn’t carry along any restrictions on the ordering of other

memory operations, so can be performed with relaxed ordering.

〈TileHashTable Method Definitions〉 ≡
void TileHashTable::MarkEntries() {

for (size_t i = 0; i < size; ++i) {

TextureTile *entry = table[i].load(std::memory_order_acquire);

if (entry)

entry->marked.store(true, std::memory_order_relaxed);

}

}

〈TextureTile Public Data〉 ≡
mutable std::atomic<bool> marked;

5 Here we haven’t bothered to bracket the access to the hash table with TextureCache::RCUBegin() and TextureCache::RCUEnd()

calls; doing so is actually unnecessary in this case. In in our implementation the per-thread flags are only ever accessed to check for quiescence

in FreeTiles(), but here the freeTilesMutex has been acquired at the start of the GetFreeTile() method, which in turn prevents

any other thread from entering FreeTiles().



28 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

We can now also implement the fragment in TileHashTable::Lookup() that clears

marked after a tile is found in the hash table. A small detail is that marked is only

written to if its current value is true; if it’s already unmarked, then no redundant

write is performed and a bit of unnecessary inter-core communication is saved.

As with setting marked, clearing it imposes no further memory ordering require-

ments. Note that it is possible that two threads may simultaneously clear marked;

this is harmless, and the added overhead of a more expensive mechanism to avoid

it (e.g. an atomic compare-exchange), would give no benefit.

〈Update entry’s marked field after cache hit〉 ≡
if (entry->marked.load(std::memory_order_relaxed))

entry->marked.store(false, std::memory_order_relaxed);

Constructing the New Hash Table
We can now start to implement the FreeTiles() method. As you read through

its implementation, recall that the calling code in GetFreeTile() is holding

freeTilesMutex, which ensures that only one thread can be in FreeTiles() at

once.

As described earlier, the idea is to construct a new hash table that stores only

some of the tiles in the current hash table and to add the remaining tiles to the

free list once it is certain that no other thread is accessing them.

〈TextureCache Method Definitions〉 ≡
void TextureCache::FreeTiles() {

〈Copy unmarked tiles to freeHashTable〉
〈Swap texture cache hash tables〉
〈Ensure that no threads are accessing the old hash table〉
〈Add inactive tiles in freeHashTable to free list〉

}

Copying active tiles to the new hash table are handled by TileHashTable::CopyActive().

〈Copy unmarked tiles to freeHashTable〉 ≡
hashTable.load(std::memory_order_relaxed)->CopyActive(freeHashTable);

Usually, CopyActive() copies a subset of the tiles to the new hash table, leaving

a number of others to be freed. However, if the texture cache is much too small

to store the working set of the rendering threads, it may happen that all of the

entries are unmarked and thus copied; in this case, the 〈Handle case of all entries

copied to freeHashTable〉 fragment falls back to copying an arbitrary subset of the

tiles to the destination hash table, at least ensuring that some free tiles will be

available. (Since that fragment is both rarely invoked and not very interesting,

we won’t include its implementation here.)



SECTION 1.5 Te x t u r eCa c h e IMPLEMENTAT ION 29

〈TileHashTable Method Definitions〉 ≡
void TileHashTable::CopyActive(TileHashTable *dest) {

int nCopied = 0, nActive = 0;

〈Insert unmarked entries from hash table to dest〉
〈Handle case of all entries copied to freeHashTable〉

}

Note that no mutual exclusion is used when copying from the active hash table:

more entries may be added to it by other threads while CopyActive() is copying

entries to dest. This poses no problem: if an entry is added after the position

of the index i, then it will be copied over to dest. If added before, it will be

recycled and added to the free list. While the latter case is a bit undesirable

(since a recently-added tile is likely to see more use in the near future), we have

found that this case happens incredibly rarely—usually never in our experiments.

Because the cost when it does happen is a small amount of redundant I/O, we

won’t bother to do anything extra to avoid it here.

〈Insert unmarked entries from hash table to dest〉 ≡
for (size_t i = 0; i < size; ++i) {

hashEntryCopied[i] = false;

if (TextureTile *entry = table[i].load(std::memory_order_acquire)) {

〈Add entry to dest if unmarked〉
}

}

hashEntryCopied is allocated in the TileHashTable constructor; it’s the same size

as the hash table and is used to record which entries were added to the new hash

table.

〈TileHashTable Private Data〉 ≡
std::vector<bool> hashEntryCopied;

〈Add entry to dest if unmarked〉 ≡
++nActive;

if (entry->marked.load(std::memory_order_relaxed) == false) {

hashEntryCopied[i] = true;

++nCopied;

dest->Insert(entry);

}

After the unmarked tiles have been added to freeHashTable, an atomic swap via

the std::atomic exchange() method replaces the pointer to the hash table stored

in TextureCache::hashTable with freeHashTable, thus making the new hash table

the one that is found by other threads. The exchange is performed with both

acquire and release memory semantics, thus ensuring that memory operations

before the exchange (e.g. initializing the new hash table) are all ordered before

the exchange, and operations after (e.g. waiting for the RCU grace period) are

all ordered after.



30 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

〈Swap texture cache hash tables〉 ≡
freeHashTable = hashTable.exchange(freeHashTable, std::memory_order_acq_rel);

Adding Tiles to the Free List
After FreeTiles() has exchanged the new hash table for the old one, but before

the uncopied tiles can be added to the free list, it’s necessary to be sure that

no thread is still accessing the old hash table (or tiles that were stored in it).

Waiting for an RCU grace period to pass suffices to ensure that this is the case.

〈Ensure that no threads are accessing the old hash table〉 ≡
for (size_t i = 0; i < threadActiveFlags.size(); ++i)

WaitForQuiescent(i);

It’s now safe to add the free tiles to freeTiles; this is handled by the

TileHashTable::ReclaimUncopied() method. (Recall that freeTilesMutex is held

when FreeTiles() executes, so it’s safe to modify freeTiles without worrying

about other threads trying to access it concurrently.) If, after freeing, the number

of free tiles is under the low watermark, we immediately mark the tiles in the

hash table so that the next tile free operation has a chance of making sensible

choices about which tiles to reclaim.

〈Add inactive tiles in freeHashTable to free list〉 ≡
freeHashTable->ReclaimUncopied(&freeTiles);

if (freeTiles.size() < markFreeCapacity)

hashTable.load(std::memory_order_acquire)->MarkEntries();

ReclaimUncopied() clears the hash table and adds any entries that weren’t copied

to the provided vector. All memory operations can be performed with relaxed

semantics, since this method is only used with freeHashTable, which will only be

visible to other threads in the future after a separate memory ordering operation.

〈TileHashTable Method Definitions〉 ≡
void TileHashTable::ReclaimUncopied(std::vector<TextureTile *> *returned) {

for (size_t i = 0; i < size; ++i) {

if (TextureTile *entry = table[i].load(std::memory_order_relaxed)) {

if (!hashEntryCopied[i])

returned->push_back(entry);

table[i].store(nullptr, std::memory_order_relaxed);

}

}

}

1.6 EVALUATION

We have performed a series of experiments to evaluate our implementation. In the

remainder of this section, we first investigate how well texture caching works in

general for texture-heavy scenes rendered with path tracing and then investigate

the effect of cache size on overall performance. Next, we examine the effect of

ray differentials and disk read latency on these results. Finally, we evaluate the



SECTION 1.6 EVALUAT ION 31

Figure 1.1: San Miguel Scene Used for Texture Cache Evaluation.This is sanmiguel_cam14.pbrt
from the pbrt scenes distribution.

parallel scalability of our implementation and compare to a few alternate texture

cache designs.

1.6.1 METHODOLOGY

Most of our measurements used the view of the San Miguel scene shown in

Figure 1.1. All were rendered at 1600 × 1100 resolution using path tracing, with

32 samples per pixel. Bilinear filtering was used for all texture lookups (using the

more detailed MIP map pyramid level closest to the level indicated by the filter

footprint.) All of our timings are reported in terms of wall-clock time and are the

minimum reported time over a few runs.

We ran our tests on a Google Compute Engine n1-highcpu-32 instance with a

Haswell CPU, running Ubuntu 15.10 Linux. This system has 16 physical cores

with hyperthreading and 28.8 GB of RAM.

When benchmarking a system like this one that uses caching to reduce I/O,

it’s important to be mindful of the operating system’s buffer cache: operating

systems generally use free memory to store the contents of files that have been

read recently; if they are read again while still in the buffer cache, their contents



32 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

can just be copied from RAM rather than read from disk (generally thousands

of times more quickly).

Therefore, for evaluation purposes here, we have modified our implementation to

optionally impose a minimum latency on disk reads, thus better modeling the

actual overhead of reading from disk. (When not benchmarking, of course, one

is happy to have the buffer cache help out when it is able to.) Unless specified

otherwise, we have imposed a minimum 5ms overhead on all texture tile reads in

the following; this is much more overhead than there would be from a local SSD,

but is probably less than there would be if reading textures from a file server

over the network. Section 1.6.4 examines the effect of varying the read latency

on performance.

1.6.2 BENEFITS OF ON-DEMAND LOADING

It’s instructive to measure the value of loading textures on demand, using a large

enough cache such that texture tiles never need to be freed. For two scenes, we

compared performance with loading all textures at startup time (as pbrt-v3 does

today) versus only loading tiles of them when needed for a texture access. For the

preloading case, our implementation differs from pbrt-v3 in that it stores texels

from 8-bit texture formats in a single byte, rather than using a 4-byte float.

(This matches how the texture cache stores tiles in memory.)

Before running these tests, we primed the OS buffer cache by reading the

contents of all of the textures (cat textures/* > /dev/null) before running the

benchmarks; if anything, this gives a slight advantage to the preloading case, since

it loads more data from disk. (The 28 GB of RAM in the system was enough to

comfortably store all of the textures in the buffer cache.)

Total run time for the San Miguel scene with 32 threads and preloaded textures

was 157s; 684 MB of RAM was used for texture data. When rendered with

textures loaded on demand using our texture cache, it took just 105s and only

141.8 MB of texture data was read from disk. Almost all of this time difference is

thanks to saving 55s at startup from from not loading the textures and computing

MIP maps then. If we subtract scene parsing and construction time and only

measure time spent rendering the image, run time increased from 89.5s to 92.5s

when lazy loading was used, though recall that in the lazy loading case, time

spent reading textures from disk adds to rendering time, while it doesn’t with

preloading.

We also evaluated on-demand loading with a frame from the Measure One

animation shown in Figure 1.2. (This corresponds to frame52.pbrt in the pbrt

scenes distribution.) This scene was rendered at 1440 × 630 resolution with path

tracing and 512 samples per pixel.

With preloaded textures, the scene renders in 655s and 470.2 MB is used to

store textures in memory. At startup time, 17s is spent reading textures and

generating MIP maps. With lazy loading, total run time is 612s (7% faster), and

only 47.93 MB is needed to store all textures that are ever accessed.



SECTION 1.6 EVALUAT ION 33

Figure 1.2: Frame 52 of the Measure One Animation.If all texture in the scene is loaded at startup time, 470 MB of texture is
stored in memory. With lazy loading, only 48 MB of texture is read from disk.

Other than memory savings, the performance benefits from lazy texture loading

largely depend on how long it takes to render the scene—for a multi-hour render,

saving tens of seconds at startup time to load textures is no big deal. However,

for quick previews and low sampling rates, this savings helps a lot.

1.6.3 EFFECT OF CACHE SIZE

Having established that on-demand texture loading works well, we’ll now examine

how texture cache size affects performance. We rendered the San Miguel scene

with a range of texture cache sizes and measured three statistics: rendering

time, the cache miss rate (the fraction of texel lookups that didn’t find the

corresponding tile in the cache), and the total number of bytes read from disk.

As before, we used 32 threads and a minimum 5ms tile read latency for these

experiments. Table 1.1 shows the results.

Down to an 80 MB cache, run time is just as good as the unlimited cache case;

disk I/O has gone up by 31%, but averaged over the total rendering time, it’s just

over 1.8 MB/s, which is quite reasonable. At a 48 MB cache and smaller, the miss

rate starts to increase rapidly and total I/O picks up accordingly, as the cache

is too small to hold the texture working set; many tiles are discarded to make

room for other ones, just to be read back into memory again soon afterward.

Happily, 80 MB is a very small amount of memory in the grand scheme of things

for rendering a complex scene with path tracing; it’s just under 12% of the total

amount of texture data for this scene.

One useful measure of the performance of a cache is the rate of capacity misses—

the fraction of misses that are for items that were previously in the cache but were

then evicted. This value can be computed from the amount of disk I/O: all bytes



34 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

Table 1.1: Performance as a Function of Texture Cache Size in MB. 160 MB is enough to store
all accessed textures in memory; run time is unchanged down to an 80 MB cache.

Cache Size Run time Miss Rate Total I/O

160 MB 102s 0.0018% 141.81 MB

128 MB 102s 0.0019% 146.52 MB

96 MB 102s 0.0020% 157.28 MB

80 MB 102s 0.0024% 185.50 MB

64 MB 105s 0.0050% 401.03 MB

48 MB 117s 0.0231% 1.75 GB

40 MB 140s 0.0519% 3.69 GB

32 MB 217s 0.0880% 9.48 GB

read beyond those needed for the total amount of texture accessed (141.81 MB)

must be for items that were previously in the cache. Thus, for the 80 MB cache,

185.50 − 141.81 = 43.69 MB of disk I/O was due to capacity misses, or 24% of

the total. For a 48 MB cache, the capacity miss rate is much higher: 92%.

1.6.4 READ LATENCY

As discussed in Section 1.6.1, we have imposed a minimum disk read latency on

all texture tile reads in order to counteract the operating system buffer cache.

In order to understand how the texture cache would perform under a variety

of conditions—from fast local SSDs to slower remote fileservers—we measured

how performance changed as a function of disk read latency. Table 1.2 shows the

results with the San Miguel scene, a 64 MB texture cache, and various amounts

of tile read latency.6

We can see that disk latency indeed affects overall performance, though the

latencies we would expect from a local SSD (< 1ms) or a local spinning disk

(∼10ms) don’t slow down rendering too much. For higher latencies, as might be

seen when reading from a file server, performance degrades significantly.

There is some hope, however—carefully examining the measurements provides

an interesting clue. For this scene with a 64 MB texture cache, a total of 34,078

texture tiles were read from disk. With a 50ms read latency, this should in theory

add 1704s of waiting time compared to no read latency; split over 32 threads,

this is 53s of wall-clock time. Yet, we’ve only seen a 40s loss in performance. How

can this be?

Recall that we’re running on a system with hyperthreading: each CPU core

has hardware contexts for two threads and normally switches between them

frequently; doing so allows computation to continue when one of the threads

6 The actual average read latency was just 0.009ms in the case that we didn’t impose a minimum latency, indicating that the buffer cache was

indeed providing file data from RAM.



SECTION 1.6 EVALUAT ION 35

Table 1.2: Performance Versus Read Latency when Rendering the San Miguel Scene. These
measurements were performed with 32 threads and a 64 MB texture cache. As the time to read a texture
tile from disk increases, rendering time increases accordingly.

Read Latency Run time

0ms 102s

1ms 104s

5ms 106s

10ms 108s

25ms 119s

50ms 142s

is stalled. When a hyperthreaded CPU has just one thread to run, that thread

will run more quickly than if it was vying for time with another thread (though

it generally won’t get as much done as two threads on a single core would.) Thus,

when a thread is stalled waiting for disk I/O, we don’t fully pay the price for

it being idle; the other thread running on its core can continue (if not stalled

itself), and more quickly than it would have otherwise. This explains why overall

performance didn’t fall as much as we might have expected.

In the case of high read latency, adding more threads can improve performance.

By giving the CPU more threads to run, there’s a better chance that some of them

won’t be waiting for I/O.7 With a 50ms read latency and 40 threads, the scene

renders in 125s. With 48 threads, it takes 117s, and with 64 threads, it finishes in

108s—the same as the 10ms latency case with 32 threads. Adding more threads

has its limits; having more rendering threads than hardware threads will cause

more context switches and is likely to affect overall performance by increasing

the CPU cache miss rate. However, in high-latency I/O situations, this may be

a reasonable trade off.

1.6.5 THE IMPORTANCE OF RAY DIFFERENTIALS

As discussed in Section 1.2.3, ray differentials play an important role in texture

cache performance: they improve the spatial locality of texture map lookups for

both directly- and indirectly-visible surfaces, making it more likely that texture

lookups for adjacent image will access adjacent texels in the texture map, even for

texture lookups after the first intersection. In order to measure the importance of

ray differentials, we rendered the San Miguel scene with indirect ray differentials

disabled. (Specifically, ray differentials were still present for camera rays, but all

indirect rays did not have ray differentials and thus always sampled the most

detailed MIP level—equivalent to the current behavior of the path tracer in

pbrt-v3.)

7 As it turns out, GPUs use this same mechanism to hide the effect of main memory latency from programs that they run.



36 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

Table 1.3: Performance When Indirect Rays Don’t Have Differentials. Without ray differentials,
indirect rays always access the most detailed level of the MIP map, the working set is much larger, and
much larger cache sizes are needed than if differentials are maintained.

Cache Size Run time Disk I/O

448 MB 114s 410.36 MB

384 MB 115s 530.27 MB

320 MB 127s 1.66 GB

256 MB 184s 7.12 GB

192 MB 473s 27.67 GB

The difference was remarkable; without indirect ray differentials, the total amount

of texture data accessed was 410.36 MB—2.9× more than with ray differentials!

Table 1.3 shows performance in terms of runtime and bytes of texture data read

as a function of texture cache size. Performance starts to degrade rapidly with a

texture cache of 320 MB, which takes 127s to render and reads 1.66 GB of texture

from disk. For comparison, recall from Section 1.6.3 that with ray differentials

and a 64 MB texture cache, the scene rendered in 105s and read only 401 MB of

texture from disk.

It’s also interesting to compare results for the “all in cache” cases here and in

Section 1.6.3. Performance without differentials is almost 12% worse than the

case with differentials (114s versus 102s). The difference is largely reflected in

difference in the time spent in MIPMap::Lookup() (from 11.5s to 5.7s), which is

apparently worse without ray differentials due to less coherent memory accesses

and worse CPU cache behavior.

1.6.6 SCALING WITH MORE THREADS

To evaluate how well the performance of our texture cache scales with increasing

numbers of threads, we compared the parallel scalability of pbrt with the texture

cache to its scalability with preloaded textures. We again rendered the San Miguel

scene, comparing preloaded textures, a 160 MB texture cache (large enough to

hold all accessed tiles), and a 40 MB texture cache (where there was a significant

amount of tile freeing over the course of rendering).

For these tests, we subtracted system startup time (including parsing scene

description files, BVH construction, etc.) and shutdown time, since these phases

are largely serial. Thus, we can focus on the parallel scalability of the actual

image rendering computation. (As before, note that this means that time spent

on texture I/O is included in the texture caching measurements, but not in the

preloaded textures measurements.) The results are shown in Table 1.4.

The results are quite good: with or without the texture cache, pbrt exhibits

linear parallel scaling up to the number of physical cores in the system, 16, and

consistently good scaling up to the number of hardware threads, 32. All of the

work to use lock-free algorithms and RCU has paid off.



SECTION 1.6 EVALUAT ION 37

Table 1.4: Comparison of Parallel Scalability of pbrt with Preloaded Textures to pbrt with
Texture Caching. We measured image rendering time (independently of scene construction and cleanup
time) with a range of thread counts for both preloaded textures and two differently-sized texture caches.
Scalability was just as good with a texture cache as without.

Threads Preload (no cache) 160 MB Cache 40 MB Cache

1 2172s (1x) 2177s (1x) 3672s (1x)

4 522s (4.16x) 542s (4.02x) 903s (4.07x)

16 133s (16.33x) 129.5s (16.81x) 224.5s (16.35x)

32 85s (25.55x) 88.5s (24.60x) 125.5s (29.25x)

Table 1.5: Total Texture I/O as a Function of Thread Count. For a given texture cache size,
increasing the number of threads will in general increase the amount of disk I/O, since the total texture
working set will be larger. In practice, I/O grows very slowly unless the cache is quite small.

Threads 80 MB Cache 32 MB Cache

1 185.45 MB (1x) 7.29 GB (1x)

4 185.45 MB (1.00x) 7.32 GB (1.00x)

16 185.70 MB (1.00x) 8.12 GB (1.11x)

32 185.36 MB (1.00x) 9.46 GB (1.30x)

1.6.7 EFFECT OF THREADS ON I/O

In general, we expect that given a fixed size texture cache, adding more threads

will make the cache less effective: since threads work on tiles of the image,

having more threads running concurrently means that more tiles are being

rendered concurrently, which in turn means that more distinct parts of the scene’s

texture maps are being accessed and the overall working set is larger. In order

to understand how much this factor affects the texture cache performance, we

measured how total I/O varied as the number of threads varied for a few cache

sizes; see Table 1.5.

To our surprise, more threads generally had little effect on the amount of I/O

required; it was only in the case of a very small 32 MB texture cache that I/O

increased to a meaningful degree with a 32 threads.

1.6.8 COMPARISON TO OTHER CACHE DESIGNS

We have demonstrated that our implementation scales well; of course, one

may ask whether the complexity was necessary. Would a more straightforward

implementation based on mutexes have done as well? The experience of coming

to our current implementation taught us that the answer is “no”, but for

completeness, we compared the performance of a few alternatives (some of which

correspond to approaches we implemented before coming to the one described in

this document).



38 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

Table 1.6: Performance with a Partitioned Texture Cache. The texture cache is split into partitions,
each of which is protected by a reader–writer mutex. Measurements used 32 threads and are reported as
a multiple of single-thread performance with our RCU-based implementation. Scalability is terrible and
increasing the number of partitions doesn’t help much.

Partitions 160 MB Cache 64 MB Cache

128 492s (4.37x) 486s (4.11x)

1024 352s (6.11x) 355s (5.62x)

8192 366s (5.87x) 353s (5.66x)

One simple way to address the issue of concurrent texture cache access by multiple

threads would be to have a separate texture cache per thread. This approach has

two big problems: excessive memory usage and increased I/O. A 40 MB texture

cache for each of 32 threads adds up to 1.25 GB—more memory than would be

used for preloading all textures for the San Miguel scene. Further, with separate

caches, total I/O would increase substantially, since any tile that was accessed

by multiple threads would be read from disk independently and redundantly. For

anything more than a few threads, this approach isn’t a good one.

A straightforward way to make a shared texture cache work well with multiple

threads accessing it is to use a single reader-writer mutex to protect it: on access,

threads acquire the reader lock and are free to lookup values in the cache. Multiple

threads can hold a reader lock at the same time, and when a tile is to be added

or tiles must be freed, the thread acquires a writer lock, which prohibits other

threads from accessing the cache while its contents are being modified.

Not surprisingly, performance with this approach is terrible: with a 160 MB

texture cache (thus completely avoiding tile frees) and 32 threads, rendering time

was 14942s. (In other words, 14.3% the performance of rendering with a single

thread, or 0.7% of the performance of rendering with our implementation with 32

threads.) Not only was 73% of the total execution time spent in the kernel, but

the time spent running “user” code was 3.3× more than with our texture cache;

all of this was presumably due to the highly contended mutex and the cost of

cache coherence between the CPUs as they all competed for access to it.

We also implemented a partitioned texture cache, where tiles are stored in a hash

table as in our implementation, but where the hash table is split into a fixed

number of partitions, each of which has its own reader-writer mutex. In turn,

threads acquire the mutex for the part of the hash table they’re accessing. This

approach has less mutex contention compared to a single mutex. Table 1.6 shows

the results with 32 threads for two different cache sizes and four different degrees

of partitioning, where speedup is measured with respect to a single thread.

Results are poor; 4− 6× speedups with 32 threads on 16 cores is not very good.

From the performance logs, we noted that over 40% of execution time was spent

in the TextureCache::Texel() method. (With our implementation, it’s just a few

percent.) Even at 8192-way partitioning, where mutex contention is relatively



SECTION 1.7 CONCLUS ION 39

low, the overhead of cache-coherence operations as mutexes are acquired and

released is significant.

In a last attempt to make a partition-based approach work well, we tried adding

per-thread caches of a few tiles that were filled from the shared cache; the idea

was that these would reduce contention for the shared mutexes and improve

scalability. In practice, hit rates for those caches were only around 50% and there

was no meaningful scalability improvement.

We note that the partitioning approach did perform well when used on a system

with just 4 CPU cores; this was the first approach we tried, and results on a 4

core system led us to believe that it might be a reasonable one—an illusion that

was quickly shattered when we started running tests on the 16 core system.

1.7 CONCLUSION

We have described a texture cache implementation based on a lock-free hash

table that uses read-copy update to reclaim texture tiles. It scales well to at least

32 threads and significantly reduces the amount of memory needed for textures

for rendering versus loading all textures at startup time.

The overall efficiency of the renderer affects the rate of texel requests that

must be served by the texture cache, and in turn, how much disk read latency

affects performance. pbrt is fairly efficient, but isn’t as fast as highly-optimized

commercial systems.8 It would be interesting to measure the performance of our

texture cache implementation with a faster rate of texture lookups.

It would also be interesting to measure our implementation’s parallel scalability

on systems with even more CPU cores, including multi-socket systems and “many

core” processors like Xeon Phi. Given that there are no hints of scalability starting

to fall off up to 16 cores and 32 threads, we have some optimism that scalability

will continue to be good. On the other hand, our early optimism about the

partitioned cache’s viability based on benchmarks on a 4 core system taught us

to be cautious. If readers have access to interesting systems with more cores, we’d

be interested to help do these measurements.

Our choice of tile replacement algorithm probably merits further investigation;

an approach that more accurately determines which tiles are least-recently-used

may be able to pay back the costs of increased cache coherency overhead through

less disk I/O. It would also be interesting to see if freeing only a single tile when

a tile was needed was viable—such an approach might improve performance by

always having as many entries as possible in the texture cache. (See Exercise 1.4

for further discussion of these topics.)

Finally, we note that operating systems provide the ability to “memory map”

files, where a section of the virtual address space can be allocated for a file and

8 As one data point: we have done an experimental integration of the highly-optimized Embree ray intersection routines (Wald et al. 2014)

with pbrt; intersection tests using their implementation were 2.5− 3× faster than ours.



40 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

where the file contents are read into RAM on demand when accessed. When

memory gets low, pages are claimed. One advantage of this approach is that it

naturally uses as much RAM as is free. It would be interesting to compare a

texture cache built using this mechanism to ours as well.

1.8 FURTHER READING

Peachey’s (1990) technical report on texture caching is an excellent read; it

describes the texture cache implementation used in Pixar’s RenderMan renderer

through the 1980s and 1990s. Christensen et al. (2003) describe the use of indirect

ray differentials for geometry and texture caching; they used per-thread texture

caches on a system with just a few CPU cores.

Suykens and Willems (2001) discuss issues related to computing ray differentials

for diffuse and glossy indirect rays. Recently, Belcour et al. (2017) developed a

more principled approach for filtering texture with both forward and bidirec-

tional path tracing. An interesting observatrion from their work was that when

connecting two vertices with bidirectional path tracing, it’s necessary to compute

new filtered texture values for those two vertices to get good results.

The scalable approach we implemented for recycling texture tiles is based on ideas

from the “read-copy update” technique used in the Linux kernel (and elsewhere).

The paper by McKenney and Slingwine (1998) and McKenney and Walpole’s

article in Linux Weekly News (2007) are both good references about RCU. For

more information about not only read-copy update but also general topics in

scalable parallel programming, see McKenney’s book (2017) and Jeff Preshing’s

blog (http://preshing.com/), both of which cover these topics well.

Michael (2002) describes a lock-free hash table that directly supports element

deletion. See also Triplett et al. (2011), who describe a lock-free hash table that

also supports resizing. An interesting approach to lock-free hash tables is CPHash,

described by Metreveli et al. (2011), where the hash table is partitioned across

CPUs (so that each CPU can access its partition without locking) and message

passing between CPUs is used to communicate requests and results.

1.9 EXERCISES

1.1 With the current requirement of power-of-2 tile sizes, some texture

formats make poor use of the fixed-size allocation for tiles. For example,

single channel Y8 textures are 64× 64 texels, wasting 2/3 of the available

space in the fixed tile size. Modify the texture cache so that non-power-

of-2 tile sizes can be used; for the Y8 case, tiles could be 110× 110 texels,

wasting just 188 bytes. Test your change with one or more scenes. (Be

sure to use scenes that don’t just use texture formats that already fit

the tile size exactly, like RGB8.) How does your change affect cache hit

rates and overall rendering performance?



SECTION 1.9 EXERC I S ES 41

Next, try using an approach like RadicalInverse() does to ensure that

the divides and modulus operations for texel addressing with your

scheme are done with compile-time constants and can be performed

efficiently. (Recall the discussion of this topic on p. 447 of the third

edition.) How much performance benefit does that modification give?

1.2 In our implementation, found it worthwhile to special-case the low-

resolution images at high levels of the image pyramid, thus not needing to

use tile memory for them. Is it also worth having a more memory-efficient

representation for texture tiles with the same texel value throughout?

Investigate how often such tiles are found in practice and estimate

whether this would be worthwhile. How does the size of tiles affect your

conclusions?

1.3 Our implementation’s fixed tile size of 12 kB (corresponding to, e.g.,

64× 64 8-bit RGB pixels) was an attempt to balance disk I/O overhead

with memory efficiency. Smaller tiles would lead to more I/O operations,

but would use a given amount of cache memory more effectively by

reading in fewer texels that ended up never being accessed. (And for

larger tiles, conversely on both fronts.) Investigate the performance

impact of different-sized tiles. How does the latency for a disk read affect

your results?

1.4 Our implementation approximates a least-recently-used tile replacement

policy by marking all active tiles when the number of free tiles gets low,

clearing marks when tiles are accessed, and freeing the tiles that are still

marked later. Modify the implementation to more accurately track usage,

for example by storing a “last accessed” timestamp in each texture tile.

Update the tile freeing logic to use this information to decide which tiles

to free. Do you see lower texture cache miss rates due to better choices

of which tiles to free? Is any measurable overhead added to tile lookups?

One advantage of an approach like this one is that it’s possible to decide

ahead of time exactly how many tiles to free. On one hand, it’s better

to free few tiles each time to maximize the number of remaining tiles,

in case any of them are needed again soon. On the other hand, there

is some fixed overhead to freeing tiles, which means that we don’t want

to perform too many tile freeing operations. Experiment with varying

the number of freed tiles and measure system performance. What is the

right trade-off for your implementation?

1.5 In our evaluation, we exclusively used forward path tracing, where all

paths start out fairly coherently. BDPT and MLT both have somewhat

different access patterns to the scene. For example, while BDPT still

creates eye paths in buckets, light paths from BDPT are fairly irregular

(especially if well-distributed sampling patterns are used). MLT has

its own characteristics: large step mutations by design lead to very

incoherent paths, but on the other hand, small step mutations are likely

to be friendly to texture caches. Investigate how well the texture cache



42 THE IMPLEMENTAT ION OF A SCALABLE TEXTURE CACHE CHAPTER 1

performs with those approaches in comparison to its performance with

path tracing. Do the parameters to the light transport algorithm (large

step probability, etc.) affect texture cache performance?

1.6 Replace pbrt’s ray differential computations with the technique devel-

oped by Belcour et al. (2017). Measure the impact on the texture cache of

using their approach, both for regular path tracing, where cache behav-

ior should be similar, and bidirectional techniques, where their method

should give much better cache behavior.

1.10 BIBLIOGRAPHY

Belcour, L., L.-Q. Yan, R. Ramamoorthi, and D. Nowrouzezahrai. 2017. An-

tialiasing complex global illumination effects in path-space. ACM Transactions

on Graphics, 36 (1).

Christensen, P. H., D. M. Laur, J. Fong, W. L. Wooten, and D. Batali. 2003. Ray

differentials and multiresolution geometry caching for distribution ray tracing in

complex scenes. In Computer Graphics Forum (Eurographics 2003 Conference

Proceedings) 22 (3), 543–52.

McKenney, P. E., ed. 2017. Is parallel programming hard, and, if so, what can you

do about it? https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/

perfbook.html

McKenney, P. E. and J. D. Slingwine. 1998. Read-copy update: using execution

history to solve concurrency problems. Parallel and Distributed Computing and

Systems, 509–18.

McKenney, P. E. and J. Walpole. 2007. What is RCU, fundamentally? Linux

Weekly News, December 17. https://lwn.net/Articles/262464/.

Metreveli, Z., N. Zeldovich, and F. Kaashoek. 2011. CPHash: a cache-partitioned

hash table. MIT CSAIL Technical Report .

Michael, M. M. 2002. High performance dynamic lock-free hash tables and list-

based sets. Proceedings of the Fourteenth Annual ACM Symposium on Parallel

Algorithms and Architectures (SPAA ’02).

Peachey, D. 1990. Texture on demand. Pixar Animation Studios Technical Memo

217 . http://graphics.pixar.com/library/TOD/paper.pdf

Stafford, D. 2011. Better bit mixing—improving on MurmurHash3’s 64-bit final-

izer. http://zimbry.blogspot.ch/2011/09/better-bit-mixing-improving-on.html

Suykens, F., and Y. Willems. 2001. Path differentials and applications. In

Rendering Techniques 2001: 12th Eurographics Workshop on Rendering, 257–68.

Triplett, J., P. E. McKenney, and J. Walpole. 2011. Resizable, scalable, concur-

rent hash tables via relativistic programming. Proceedings of the 2011 USENIX

Conference.



SECTION 1.11 REV I S ION H ISTORY 43

Wald, I., S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. 2014. Embree: a

kernel framework for efficient CPU ray tracing. ACM Transactions on Graphics

(Proceedings of SIGGRAPH 2014) 33 (4), 143:1–143:8.

1.11 REVISION HISTORY

5 March 2017: initial version posted.


